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This talk is about tension between the 
notion of non-classicality arising from 
phase-space description of CV systems 
and those coming from information-
theoretic considerations.
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Classical states: those admitting a description 
in terms of a mixture of coherent states

Physics based notion (phenomenology of 
classical states may be described by ME, 
no need of quantum "optics").

Nonclassical states: those with a negative/singular 
Glauber P-function (oops, Glauber-Sudarshan)



Negativity of Wigner function  
(squeezed states are classical?)  

Violation of Bell inequalities  
(no violation with Gaussian states & meas) 

Separability  

Vanishing quantum discord   
(                         is a classical state?) 

quantum non-Gaussianity & stellar rank  
(quantum sampling, which task is more noncl?) 

Quadrature coherence scale 

Yet, a plethora of (inequivalent) notions of ncl exist
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Non-classicality criteria from phase-space 
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Quantumness of bipartite  systems made of 
two bosonic modes

[a, a†] = 1 [b, b†] = 1

%AB

pAB



P-classical states
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Convex combination of factorized coherent states
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Entanglement & Discord
(which notion is captured?) 

Separable states (zero entanglement): can be created from any other state 
by local operations and classical communication

Classical-Quantum states (zero A-discord): there exists a basis for A for 
which the locally-accessible information is maximal and can be obtained 
without disturbance to the combined system

%AB =
X

k

p(k) %Ak ⌦ %Bk

Quantum-classical states (zero B-discord): there exists a basis for B for 
which the locally-accessible information is maximal and can be obtained 
without disturbance to the combined system

%AB =
X

a

pA(a) |'aih'a|⌦ %Ba

%AB =
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b

pB(b) %Ab ⌦ | bih b|



Quantum Discord
(classical) Mutual information

Information gain about a subsystem as a 
results of a measurement on the other

pAB(a, b)

IAB = HA +HB �HAB

= HB �HB|A

= HA �HA|B

=
X

b
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X
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pA(a) pB|A(b|a) log pB|A(b|a)

A B

pAB(a, b) = pA|B(a|b) pB(b)

= pB|A(b|a) pA(a)



Quantum Discord

A B

(quantum) Mutual information %AB

IAB = SA + SB � SAB

6= SB � SB|A

6= SA � SA|B

=
X

b

pA(a)SB|a

=�
X

a

pA(a) Tr[%Ba ln %Ba]
pA(a) = TrAB [%AB ⇧a ⌦ I]

%Ba =
1

pA(a)
TrA [%AB ⇧a ⌦ I]



Quantum Discord
depend on the choice of measurement

The symmetry is broken SB � SB|A 6= SA � SA|B

The are different from 

SB � SB|A , SA � SA|B

IAB

DB|A = IAB � sup
{⇧a}

(SB � SB|A) = SA � SAB + inf
{⇧a}

X

a

pA(a)S(%Ba) > 0

DA|B = IAB � sup
{⇧b}

(SA � SA|B) = SB � SAB + inf
{⇧b}

X

b

pB(b)S(%Ab) > 0

Quantum A-discord

Quantum B-discord
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Classical-Classical (CC-) states
Classical-classical states (zero discord): correlations are completely 
specified by the knowledge of a classical (density) distribution
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Classical-Classical states
(examples of two-mode CC states)
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number correlated states



P-classical vs CC-classical 
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Convex combination of factorized coherent states

%AB =
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Convex combination of factorized orthogonal states



Difference photocurrent

%AB OD = a
†
a� b

†
b

For P-classical states

�O
2
D = |↵0|2 + |�0|2 +TrC � |↵0|2 + |�0|2 > 0

Each mode has a fluctuating number of quanta and the difference should 
fluctuate accordingly: for a classical two-mode system the amount of intensity 
correlations is bounded.

For number correlated states (CC states)

�O
2
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Nonclassical conditional states

%AB

Only states violating P criterion may lead to the conditional generation 
of genuine quantum states with no classical analogue 

⇧x

%Bx
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For number correlated states (CC states) %AB =
X

n

pn |nihn|⌦ |nihn|

Measuring the photon number on one side produces nonclassical (Fock) states



P-classical states are not CC
%AB =

X

b

pAB(a, b) |�aih�a|⌦ | bih b|

Necessary condition for CC: All possible conditioned states of B 
mutually commute. This can be seen by applying any POVM on A: any 
state of B conditioned on any outcome at A remains diagonal in the 
original basis. 

%AB =

ZZ
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%A = TrA [%AB] %0 = TrA [%AB |0ih0|]

This is a condition not satisfied by a generic well behaved 
P-function: almost all P-classical states are not CC

[%A, %0] = 0
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CC states are not P-classical
The set of single mode P-classical states is nowhere dense in the 
bosonic space  (its closure has no interior points).

Partial traces of P-classical states should be single-mode P-classical states.

By construction, one shows that P-classical states are nowhere dense 
in the set of CC states i.e. generic CC states are not P-classical.



P- vs CC-classicality 

The set of states being simultaneously P-classical and CC is negligible  (either 
in a metrical or topological sense).

CC criterion looks at the correlations between the information of A and B, as 
encoded in their states and regardless the quantumness of the states 
themselves.

P criterion takes into account physical constraints on those as well: e.g. 
creating Fock states with the same number of quanta does correspond to 
establishing quantum correlations between the modes, irrespectively from 
the fact that the information needed to perform this action may be of purely 
classical (local) origin.

P-classical states violate CC criterion: they represent an experimentally 
cheap resource in communication protocols that require security against 
local broadcasting. 



From a fundamental physical point of view, discord (and more in general any 
information-theoretical quantity) appears unable to account for the very 
physical constraints involved in the establishment of correlations.

Allegedly classical correlations established between systems prepared in 
states with no classical analogue are quantum in nature.

P- vs CC-classicality 



“Information is physical”
(R. Landauer 1991)

“... and physics is not merely 
information.”

(me and others, over the years)

P- vs CC-classicality 



Resource theories of quantum non-Gaussianity 
and Wigner negativity

F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro Phys. Rev. 98, 052350 (2018) 

B. Teklu, M. Bina, M. G. A. Paris  Sci. Rep. 12, 11646 (2022) 



A positive Wigner function is a sufficient condition to 
have a quantum system that can be efficiently simulated 
by classical algorithms 

For pure states WignerP is equivalent to Gaussianity, 
but in general not all WignerP states can be generated 
using GPs. 

  

● Gaussian unitaries (e.g., displacement, squeezing, CZ, ...)

● Composition with pure Gaussian states (e.g., squeezed states)

● Pure Gaussian measurements on subsystems (e.g., homodyne)

● Partial trace on subsystems

● The above operations conditioned on classical randomness or

(a) single measurement outcomes (ideal case)

(b) measurement outcomes in finite-size intervals (operational case)

● Some non-Gaussian states are NOT a resource
● It is not possible to define a resource theory on pure states only

Distinguished consequences:  

Free operations: Gaussian protocols (GPs) 

Some interesting states

One is led to consider the convex hull of GSs, as the 
maximal set of states that can be generated by GPs



Intuitive intermezzo

QnG states with positive Wigner function are bounded 
resources in the same sense in which entangled with 
positive partial transpose are bounded resources 



  

State space Free states

ResourcesFree operations

Resource theory of quantum non-Gaussianity 
and Wigner negativity 

  

Free states

1) Quantum Gaussian states: convex hull of Gaussian states

2) Wigner-positive states

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

 resource theory of quantum non-Gaussianity  

Closed under Gaussian protocols.

States outside this set are called Wigner-negative states:

            resource theory of Wigner negativity

  

Free states

1) Quantum Gaussian states: convex hull of Gaussian states

2) Wigner-positive states

Closed under Gaussian protocols.

States outside this set are called Quantum non-Gaussian states:

 resource theory of quantum non-Gaussianity  

Closed under Gaussian protocols.

States outside this set are called Wigner-negative states:

            resource theory of Wigner negativity

Some interesting states

Closed under 
Gaussian protocols

Coincide for 
pure states

Convex hull of Gaussian states

Wigner-positive states



Resource Theory

  

State space Free states

ResourcesFree operations

Resource theory of quantum non-Gaussianity 
and Wigner negativity 

State space Free states

  

State space Free states

ResourcesFree operations

Resource theory of quantum non-Gaussianity 
and Wigner negativity 

Free operations Resources are quantified by "resource 
monotone" 
(1)M(ρ)=0 for free states 
(2)Monotonicity under deterministic    

Gaussian protocols 
(3) Monotonicity on average under 
probabilistic Gaussian protocols 



A W-negativity monotone
(Wigner Log negativity aka CV-mana)

  

A computable monotone: Wigner Logarithmic Negativity
(AKA, CV-mana)

The negative volume of the Wigner function is a good candidate:

Define the WLN as: 

It is an additive & computable monotone!

Note: analogue to Logarithmic Negativity of entanglement (not convex)

[A Kenfack, K Życzkowski, J Opt B (’04)]

[M Plenio, PRL (‘05)]

  

A computable monotone: Wigner Logarithmic Negativity
(AKA, CV-mana)

The negative volume of the Wigner function is a good candidate:

Define the WLN as: 

It is an additive & computable monotone!

Note: analogue to Logarithmic Negativity of entanglement (not convex)

[A Kenfack, K Życzkowski, J Opt B (’04)]

[M Plenio, PRL (‘05)]

inspired by negative volume  
of Wigner function (Kenfack 04)

not convex as it happens for  
the logarithimic negativity of 
entanglement (Plenio 05) 

example: cubic phase state
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should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.,

δCR[ρ] = inf
pi ,|ψi 〉

∑

i

piδ[|ψi〉], (8)

where ρ =
∑

i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)
of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)
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of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries
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2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N
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are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.,

δCR[ρ] = inf
pi ,|ψi 〉

∑

i

piδ[|ψi〉], (8)

where ρ =
∑

i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)
of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.,

δCR[ρ] = inf
pi ,|ψi 〉

∑

i

piδ[|ψi〉], (8)

where ρ =
∑

i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)
of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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(a) Ideal case: !DGP(ρ) =
∫

dλp(λ|ρ)σλ, where
σλ = 1

p(λ|ρ)KλρK
†
λ. We require that M(ρ) !∫

dλp(λ|ρ)M(σλ).
(b) Operational case: !DGP(ρ) =

∑
i pi|ρσi , where

σi = 1
pi|ρ

KiρK
†
i . We require that M(ρ) ! ∑

i pi|ρM(σi ).
Some additional properties that a monotone can en-

joy are faithfulness: M(ρ) > 0 ⇔ ρ /∈ G (W+), convexity:
M[

∫
dνp(ν)ρν] "

∫
dνp(ν)M(ρν ) for a generic probabil-

ity distribution p(ν) and additivity: M(ρ ⊗ σ ) = M(ρ) +
M(σ ) [80]. If the monotone is convex, monotonicity on
average directly implies monotonicity under deterministic op-
erations (3a ⇒ 2), moreover convexity also gives operational
average inequalities from the ideal ones (3a ⇒ 3b).

Monotones can be used to give bounds on the efficiency of
interconversion between resource states. Suppose that ! is a
free operation which converts resource states in a probabilistic
manner: it maps k copies of ρ to m copies of a target state
σ , i.e., !(ρ⊗k ) = σ⊗m with probability p. By virtue of the
monotonicity on average (3b) we can write

M(ρ⊗k ) ! pM(σ⊗m), (3)

where we considered an operational GP to get a finite prob-
ability p and we discarded the other conditional states in the
sum.

Moreover, additive monotones allow us to express the
inequality in terms single letter quantities

kM(ρ) ! p mM(σ ). (4)

This inequality also gives a lower bound for the average
conversion ratio [64]. On average we will need to run the prob-
abilistic operation 1/p times to obtain a successful outcome,
therefore the average number n of copies needed to extract m
target states is E[n] = k/p. We can thus rewrite (4) as

E[n] = k

p
! m

M(σ )
M(ρ)

, (5)

i.e., the average number of copies of the input state is lower
bounded by the ratio of the monotones times the number of
output copies of the protocol. This means that in order to
concentrate the resource [i.e., M(σ )/M(ρ) > 1], we need an
average conversion ratio smaller than unity m/E[n] < 1.

If free operations converting two resource states in both
directions exist, we must have M(ρ⊗k ) = M(σ⊗m); this is
trivially true if the conversion is achieved with a free uni-
tary transformation. It is usually difficult to exactly convert
between resource states using a finite number of copies, there-
fore it is customary to consider conversions in the asymptotic
limit of infinite copies. However, we are not going to deal with
the asymptotic resource theory of QnG in the present work.

1. A computable monotone: Wigner logarithmic negativity

Negativity of the Wigner function has long been recog-
nized as an important quantum feature and in particular the
volume of the negative part has been introduced as a nonclas-
sicality quantifier [81]. Here we use it to define a resource
monotone.

In [64] a computable and additive magic monotone based
on the negative values of the discrete Wigner function, dubbed

mana, was introduced. We call the CV counterpart Wigner
logarithmic negativity (WLN); it is defined as [82]

W(ρ) = log
(∫

d r |Wρ (r )|
)

, (6)

where the integral runs over the whole phase-space R2n,
where n is the number of modes. In Appendix C we show
that this monotone satisfies all the required properties even
if it is not convex. The proofs rely on the fact that the nega-
tivity N [ρ] =

∫
d r|Wρ (r )| − 1 is also a monotone, which is

convex but not additive. The crucial monotonicity properties
3. for W then follow thanks to Jensen’s inequality for the
logarithm.

Clearly the WLN is a faithful monotone for the re-
source theory of Wigner negativity but not for quantum non-
Gaussianity. This is akin to what happens in entanglement
theory for the log-negativity of entanglement [83,84], depend-
ing on whether one considers separable or positive partial
transpose states as free states.

The WLN is an additive monotone, since the Wigner
function of separable states can be factorized. This means
that the bound (5) is valid and we can use the ratio between
logarithmic Wigner negativities to lower bound the average
number of copies of an input resource state to obtain a certain
number of copies of the target state using a probabilistic
Gaussian protocol. We remark that this result does not say
anything about the actual existence of such protocols.

Similarly to the DV case we can prove that the WLN is
essentially the unique measure which depends on the negative
values of the Wigner function, under the assumption that the
position of these “negative patches” in phase space do not
affect such a measure. The proof follows the same idea of the
DV case presented in [64] and lately extended to coherence
and entanglement [84] (see Appendix C 2 for further details).

As a final remark, notice that the WLN is computable in
the sense that its value can usually be assessed by numerical
integration. However, in general it will be prohibitively hard
to obtain closed-form expressions, since the analytical inte-
gration of the absolute value of a function is hindered by the
requirement of finding the zeros of such function.

2. Faithful quantum-non-Gaussianity monotones

We want here to mention two possible ways to define
faithful QnG monotones.

The relative entropy of a state from the set of Gaussian
states defines a proper measure of non-Gaussianity [38],
which we call relative entropy of non-Gaussianity [39]. Note
however that, since the set of states with a Gaussian Wigner
function is not convex, the relative entropy of non-Gaussianity
can be arbitrarily increased by GPs. This measure is particu-
larly simple for pure states:

δ[|ψ〉] = S(ρ||τG) = S(τG), (7)

where S(ρ||σ ) = Tr[ρ(log ρ − log σ )] is the quantum relative
entropy, S(ρ) = Tr(ρ log ρ) is the von Neumann entropy, and
τG is the reference (mixed) Gaussian state having the same
covariance matrix as |ψ〉. We refer the reader to Appendix A 1
for a short introduction to Gaussian states and details on
the von Neumman entropy of Gaussian states. We believe it
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(a) Ideal case: !DGP(ρ) =
∫

dλp(λ|ρ)σλ, where
σλ = 1

p(λ|ρ)KλρK
†
λ. We require that M(ρ) !∫

dλp(λ|ρ)M(σλ).
(b) Operational case: !DGP(ρ) =

∑
i pi|ρσi , where

σi = 1
pi|ρ

KiρK
†
i . We require that M(ρ) ! ∑

i pi|ρM(σi ).
Some additional properties that a monotone can en-

joy are faithfulness: M(ρ) > 0 ⇔ ρ /∈ G (W+), convexity:
M[

∫
dνp(ν)ρν] "

∫
dνp(ν)M(ρν ) for a generic probabil-

ity distribution p(ν) and additivity: M(ρ ⊗ σ ) = M(ρ) +
M(σ ) [80]. If the monotone is convex, monotonicity on
average directly implies monotonicity under deterministic op-
erations (3a ⇒ 2), moreover convexity also gives operational
average inequalities from the ideal ones (3a ⇒ 3b).

Monotones can be used to give bounds on the efficiency of
interconversion between resource states. Suppose that ! is a
free operation which converts resource states in a probabilistic
manner: it maps k copies of ρ to m copies of a target state
σ , i.e., !(ρ⊗k ) = σ⊗m with probability p. By virtue of the
monotonicity on average (3b) we can write

M(ρ⊗k ) ! pM(σ⊗m), (3)

where we considered an operational GP to get a finite prob-
ability p and we discarded the other conditional states in the
sum.

Moreover, additive monotones allow us to express the
inequality in terms single letter quantities

kM(ρ) ! p mM(σ ). (4)

This inequality also gives a lower bound for the average
conversion ratio [64]. On average we will need to run the prob-
abilistic operation 1/p times to obtain a successful outcome,
therefore the average number n of copies needed to extract m
target states is E[n] = k/p. We can thus rewrite (4) as

E[n] = k

p
! m

M(σ )
M(ρ)

, (5)

i.e., the average number of copies of the input state is lower
bounded by the ratio of the monotones times the number of
output copies of the protocol. This means that in order to
concentrate the resource [i.e., M(σ )/M(ρ) > 1], we need an
average conversion ratio smaller than unity m/E[n] < 1.

If free operations converting two resource states in both
directions exist, we must have M(ρ⊗k ) = M(σ⊗m); this is
trivially true if the conversion is achieved with a free uni-
tary transformation. It is usually difficult to exactly convert
between resource states using a finite number of copies, there-
fore it is customary to consider conversions in the asymptotic
limit of infinite copies. However, we are not going to deal with
the asymptotic resource theory of QnG in the present work.

1. A computable monotone: Wigner logarithmic negativity

Negativity of the Wigner function has long been recog-
nized as an important quantum feature and in particular the
volume of the negative part has been introduced as a nonclas-
sicality quantifier [81]. Here we use it to define a resource
monotone.

In [64] a computable and additive magic monotone based
on the negative values of the discrete Wigner function, dubbed

mana, was introduced. We call the CV counterpart Wigner
logarithmic negativity (WLN); it is defined as [82]

W(ρ) = log
(∫

d r |Wρ (r )|
)

, (6)

where the integral runs over the whole phase-space R2n,
where n is the number of modes. In Appendix C we show
that this monotone satisfies all the required properties even
if it is not convex. The proofs rely on the fact that the nega-
tivity N [ρ] =

∫
d r|Wρ (r )| − 1 is also a monotone, which is

convex but not additive. The crucial monotonicity properties
3. for W then follow thanks to Jensen’s inequality for the
logarithm.

Clearly the WLN is a faithful monotone for the re-
source theory of Wigner negativity but not for quantum non-
Gaussianity. This is akin to what happens in entanglement
theory for the log-negativity of entanglement [83,84], depend-
ing on whether one considers separable or positive partial
transpose states as free states.

The WLN is an additive monotone, since the Wigner
function of separable states can be factorized. This means
that the bound (5) is valid and we can use the ratio between
logarithmic Wigner negativities to lower bound the average
number of copies of an input resource state to obtain a certain
number of copies of the target state using a probabilistic
Gaussian protocol. We remark that this result does not say
anything about the actual existence of such protocols.

Similarly to the DV case we can prove that the WLN is
essentially the unique measure which depends on the negative
values of the Wigner function, under the assumption that the
position of these “negative patches” in phase space do not
affect such a measure. The proof follows the same idea of the
DV case presented in [64] and lately extended to coherence
and entanglement [84] (see Appendix C 2 for further details).

As a final remark, notice that the WLN is computable in
the sense that its value can usually be assessed by numerical
integration. However, in general it will be prohibitively hard
to obtain closed-form expressions, since the analytical inte-
gration of the absolute value of a function is hindered by the
requirement of finding the zeros of such function.

2. Faithful quantum-non-Gaussianity monotones

We want here to mention two possible ways to define
faithful QnG monotones.

The relative entropy of a state from the set of Gaussian
states defines a proper measure of non-Gaussianity [38],
which we call relative entropy of non-Gaussianity [39]. Note
however that, since the set of states with a Gaussian Wigner
function is not convex, the relative entropy of non-Gaussianity
can be arbitrarily increased by GPs. This measure is particu-
larly simple for pure states:

δ[|ψ〉] = S(ρ||τG) = S(τG), (7)

where S(ρ||σ ) = Tr[ρ(log ρ − log σ )] is the quantum relative
entropy, S(ρ) = Tr(ρ log ρ) is the von Neumann entropy, and
τG is the reference (mixed) Gaussian state having the same
covariance matrix as |ψ〉. We refer the reader to Appendix A 1
for a short introduction to Gaussian states and details on
the von Neumman entropy of Gaussian states. We believe it
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should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.,

δCR[ρ] = inf
pi ,|ψi 〉

∑

i

piδ[|ψi〉], (8)

where ρ =
∑

i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)
of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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should be possible to build a QnG monotone by extending this
measure to mixed states with a convex roof construction, i.e.,

δCR[ρ] = inf
pi ,|ψi 〉

∑

i

piδ[|ψi〉], (8)

where ρ =
∑

i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)

of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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i pi |ψi〉〈ψi |; i can also represent a continuous
value, in which case pi becomes a distribution and the sum
is replaced by an integral. The functional δCR is convex by
construction and property 1 and 2 of Definition 2 can easily
be proven. We have not been able to prove property 3a (prop-
erty 3b follows by convexity), however we performed some
preliminary numerical checks and we conjecture property 3a
to be true (see Appendix D for more details).

We also mention that a different approach to introduce a
faithful monotone could be to connect the resource theory of
quantum non-Gaussianity to the resource theory of coherence
(see Appendix B 1 for some more discussion about this point).

III. RESOURCE ANALYSIS OF CLASSES OF PURE STATES

Given its relevance in the general framework just intro-
duced, we now use the WLN to assess the resourcefulness
of some paradigmatic examples of non-Gaussian states. In
particular, besides the aforementioned class of cubic-phase
states, we focus also on states that are of relevance in quantum
optical experiments: photon-added, photon-subtracted, and
cat states.

In addition to the WLN, given that we only consider pure
states, we also calculate the non-Gaussianity [see Eq. (7)].
As said, the latter is still not proved to be a monotone in
our framework, however the comparison between the two
quantities is particularly fruitful to single out the properties
of the states considered.

A. Cubic-phase state

As recalled, a particularly important non-Gaussian contin-
uous variable state is the so called cubic-phase state [78]. For
finite squeezing it is defined as

|γ , r〉 = exp[iγ x̂3]Ŝ(r )|0〉, (9)

where the squeezing operator Ŝ(r ) = exp[− i
2 r (x̂p̂ + p̂x̂)] for

r > 1 squeezes in momentum and antisqueezes in position,
i.e., the Heisenberg evolution of the position operator is
Ŝ(r )†x̂Ŝ(r ) = er x̂. This implies that a squeezing unitary can
be used to change the value of γ of a cubic-phase gate [78]:

Ŝ(r )† exp[iγ x̂3]Ŝ(r ) = exp[iγ e3r x̂3]. (10)

This identity shows that we can “consume” the initial
squeezing to enhance the nonlinear parameter by antisqueez-
ing the state (a Gaussian unitary)

|e3r ′
γ , r〉 = S(−r ′)|γ , r + r ′〉. (11)

This means that every monotone must be a function of the
effective parameter e3rγ , since it has to be invariant under
Gaussian unitaries:

M(|γ , r〉) = M(|e3rγ , 0〉) = f (e3rγ ). (12)

As a consequence the contour lines of any monotone on the
plane (r, γ ) are of the form γ ∝ e−3r . In particular, Eq. (12)
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FIG. 1. Non-Gaussianity δ (solid blue) and WLN W (dashed red)
of the cubic-phase state as a function of their unique parameter γ e3r .
Inset: Parametric plot of the two quantities.

shows that the resourcefulness of the cubic-phase state can be
boosted by increasing the initial squeezing.

We remark that in the case of infinite squeezing r → ∞
Eq. (11) formally means that we can freely interconvert
between ideal cubic-phase states with simple Gaussian op-
erations. This is consistent as long we assume to be in the
degenerate case where the monotone assumes an infinite value
for every cubic-phase state, irregardless of the value of γ .

For a pure cubic-phase state we can also compute the rel-
ative entropy of non-Gaussianity (7), which is again invariant
for Gaussian unitaries

δ[|γ , r〉] = h(
√

1 + 9(e3rγ )2), (13)

where h(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ); we can ex-
plicitly see the dependence on the combination e3rγ . This
measure goes to infinity as log(e3rγ ) for e3rγ → ∞, as
expected.

We are working with pure states and therefore the Hudson
theorem implies that if one measure is zero also the other has
to be zero. Furthermore, in this and in the following examples
we observe that, as long as both the WLN W and the non-
Gaussianity δ are functions of a single effective parameter,
the two measures are monotonic and thus display the same
qualitative behavior. We remark that the same fact has also
been observed for ground states of anharmonic potentials [85].
Given this heuristic argument, we also expect the WLN of the
cubic-phase state to be a monotonically increasing function of
its effective parameter, with a behavior similar to the measure
δ; this is indeed what we observe from a numerical evaluation
[86], see Fig. 1. In particular we expect it to diverge like the
non-Gaussianity monotone in the limit of infinite squeezing
or nonlinearity, in accordance to the intuition from Eq. (11).

B. Photon subtracted/added Gaussian states

The single-mode photon subtracted and photon added
Gaussian states are, respectively, defined as |α, r〉sub =
N

−1/2
sub âD(α)S(r )|0〉 and |α, r〉add = N

−1/2
add â†D(α)S(r )|0〉,

where Nsub = sinh2 r + |α|2 and Nadd = 1 + sinh2 r + |α|2
are normalization constants. These states have been realized
experimentally [32–34,41–43] and they have recently been
suggested as non-Gaussian ancillas to implement arbitrary
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FIG. 2. Non-Gaussianity δ (full lines) and WLN W (dashed
lines) of photon-subtracted (blue, lower curves) and photon-added
(red, upper curves) states as a function of r for fixed |α| = 1. The
horizontal black lines represent the value of the two figures of merit
for the state |1〉. Inset: Parametric plot of the two quantities. Since a
photon-added state is non-Gaussian for any value of r , both W and
δ never go to zero. In the region δ ! 0.8 the two parametric curves
perfectly overlap.

non-Gaussian operations [87]. Multimode photon subtracted
and added Gaussian states have also shown a nontrivial inter-
play with entanglement [88].

We can employ again the invariance under Gaussian oper-
ations to get

M[|α, r〉sub] = M
[
N

−1/2
sub (eiψ sinh |r||1〉 + α|0〉)

]
, (14)

M[|α, r〉add] = M
[
N

−1/2
add (cosh |r||1〉 + α∗|0〉)

]
, (15)

where r = |r|eiψ and M represents a generic monotone.
The results above suggest that the maximum amount of

resource reachable by these two classes of states is that of
a single photon state |1〉, a result in agreement with the
physical intuition about the preparation of these states. Photon
subtracted states can be prepared by sending the input state
into a high-transmissivity beam splitter and then conditioning
on a single photon detection on an output mode. On the
other hand, photon addition can be implemented as beam
splitting the input state with a single photon state, and then
conditioning the output on the detection of no photons. This
resource theoretical analysis shows that measurements and
ancillary states are indeed equivalent resources in this case, as
clearly confirmed by the plot in Fig. 2. We remark that while
these schemes are appropriate for single mode states, more
complicated schemes might be needed for multimode states,
see, e.g., [89,90] for photon subtraction.

We can compute the non-Gaussianity (7) for these pure
states

δ[|α, r〉sub] = h

(√
8

[|α|2csch2(r ) + 1]
3 + 1

)

, (16)

δ[|α, r〉add] = h

(√
8

[|α|2sech2(r ) + 1]
3 + 1

)

; (17)
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FIG. 3. Non-Gaussianity δ (full lines) and WLN W (dashed
lines) of cat states for different values of the parameters as a function
of |α|. The values of the parameters are (a) φ = π/4, θ = π , (b) φ =
π/4, θ = 0, (c) φ = π/8, θ = π , and (d) φ = π/8, θ = 0. Inset:
Parametric plot of the same quantities.

once again this is a function of a single parameter in both
cases. In Fig. 2 we also observe that non-Gaussianity and
WLN have the same qualitative behavior.

C. Cat states

We now want to complement the intuition we gained with
the previous examples on a different class of non-Gaussian
states: Schrödinger cat states. We are going to see that the two
figures of merit represented by non-Gaussianity δ and WLN
W can also display a qualitatively different behavior.

We define a cat state as the superposition of two coherent
states |α〉 and | − α〉 and we keep both the amplitudes and the
relative phase as parameters, as follows:

|ψ (α,φ, θ )〉 = 1√
K

(cos φ|α〉 + sin φeiθ | − α〉), (18)

where K is a normalization constant

K = 1 + sin(2φ) cos θe−2|α|2 . (19)

The non-Gaussianity δ[|ψ (α,φ, θ )〉] is not a function of
the absolute value |α| only, but it depends on both angles; we
do not report here the cumbersome analytical expression of
this quantity. A comparison between the two figures of merit
shows that their behavior is qualitatively the same as a func-
tion of φ and θ , while they show a remarkable difference as
functions of |α|. As a matter of fact, while the WLN is known
to saturate to a finite value for increasing separation between
the two Gaussian peaks of the Wigner function [81], the non-
Gaussianity diverges, i.e., lim|α|→∞ δ[|ψ (α,φ, θ )〉] = ∞.

This is shown in Fig. 3, where we present the two quantities
for a choice of parameters φ and θ as a function of |α|. We
stress that even though the two quantities have a different
behavior, they still remain monotonically increasing functions
of one another (but not strictly monotonic). It is reasonable
to ascribe this difference to the fact that non-Gaussianity is
sensitive to the distance between the state in question and
pure Gaussian states. Given the double-peaked structure of
cat states such a distance is bounded to increase indefinitely
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Random remarks
There are no "maximal resourcefulness" states 

See also R. Takagi and Q. Zhuang, Phys. Rev. A 97, 062337 (2018). 

Up to some requests WLN is the unique "decent" W-p monotone

WLN is useful to assess negativity concentration protocols



Conclusions?
Physics is not merely information: quantumness 
of correlations cannot be the unique ingredients 
in detecting nonclassical behaviour.

Phase-space is not enough: when interested in 
features related to information content, resource 
theory is a crucial tool.
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