

Max Planck - University of Ottawa Centre for Extreme and Quantum Photonics

Direct Measurement: from the wavefunction to the Kirkwood-Dirac distribution

Jeff Lundeen

Lundeen Lab www.photonicquantum.info Department of Physics Centre for Research in Photonics, Joint NRC-uOttawa Centre for Extreme Photonics QuiDiQua 2023 (Lille)

Direct Measurement Group Members

Direct Measurement Alumni

Corey

Stewart

Charles Bamber

Yamn Jash Banker

Matthew Horton Chalich

Rebecca Saaltink

Hariri Lambert Giner

Brandon Aabid Patel Sutherland

Thomas Bailey

Aldo Becerril

Jeff Lundeen

Raphael Abrahao

Davor Curic

Abdulkarim

Quantum State Tomography

- Proposed by K. Vogel. and H. Risken, Phys. Rev. A 40: 2487 (1989).
- Demonstrated by Mike Raymer: Phys. Rev. Lett. 70, 1244 (1993).
- Reconstruction is effective and well developed but indirect.

Cambridge Studies in Modern Optics

Measuring the Quantum State of Light

Ulf Leonhardt

p 8 - "we cannot measure position and momentum simultaneously and precisely... What we do see are only the different aspects of a quantum object, the "quantum shadows" in the sense of Plato's famous parable"

p 98. - "Consequently, **we can not see quantum states** directly..."

Joint measurements of *x* and *p*

• A classical particle's state is given by its position *x* and momentum *p*

XKCD

• Heisenberg's measurement-disturbance relation:

 $\Delta x \, \Delta p \geq \hbar/2$

Cannot directly observe a quantum particle's state

Are there strategies to get around this?

Outline

1. Direct Measurement of the wavefunction using weak measurement

2. Generalizations: Kirkwood-Dirac, Entangled States,...

3. Other direct measurement methods: Cloning

4. Understanding what is happening in direct measurement

P(x)

-50

Example of the Heisenberg measurement-disturbance relation

Gently measure X so that you don't disturb P

• What if we do a weak measurement of *X*, and then make a strong measurement of *P*?

i.e. $\mathbf{A} = |x\rangle\langle x|=\pi$, Initial state= $|\psi\rangle$, Strong measurement result *P=p*

• The average shift of the pointer (i.e. rotation of the polarization) is proportional to the wavefunction Lundeen Nature, 474, 188 (2011)

Direct Measurement of the Wavefunction

imaginary components of the wavefunction

Université d'Ottawa

University of Ottawa

Direct Measurement of the Wavefunction

• Demonstrate method with $\Psi(x)$ of photons exiting a single-mode fibre

Lundeen Nature, 474, 188 (2011)

- The two signals directly give $Im[\psi]$ and $Re[\psi]$.
- Direct measurement accurately shows phase and magnitude of $\psi(x)$

Université d'Ottavia University of Ottawa WAVEFUNCTIONS PHASE

profiles

Lundeen Nature, 474, 188 (2011)

Why it is Direct

1. It is local - measures $\psi(x)$ at x

2. No complicated mathematical reconstruction

- 3. The value of $\psi(x)$ appears right on our measurement apparatus
- 4. The procedure is simple and general measure \boldsymbol{x} and then \boldsymbol{p}

An operational definition of the wavefunction

- Currently there is no definition of the wavefunction.
- Clarity can come from "Operational" definitions of physical concepts.
 - i.e. the set of operations used in the lab to observe something. Bridgman, P. The Logic of Modern Physics (1927).

"The wavefunction is the average result of a weak measurement of a variable followed by a strong measurement of the complementary variable"

Test Particles (i.e. $m \rightarrow 0$, $C \rightarrow 0$) helped establish the existence of Electric and Magnetic Fields.

A MALIN MALE CAME

Test measurement (i.e. weak measurement) might be similarly useful.

- Standard tomography: Measurement bases scale with dimension
- Direct Measurement: Measurements in only two bases always

nature ARTICLES photonics PUBLISHED ONLINE: 3 MARCH 2013 | DOI: 10.1038/NPHOTON.2013.24 Full characterization of polarization states of light via direct measurement Jeff Z. Salvail1*, Megan Agnew1, Allan S. Johnson1, Eliot Bolduc1, Jonathan Leach and Robert W. Boyd^{1,2}

high-dimensional photonic state

Zhimin Shi,1* Mohammad Mirhosseini,² Jessica Margiewicz, 1 Mehul Malik,²³ Freida Rivera, 1 Ziyi Zhu, 1 and Robert W. Boyd²^4

PRL 113, 090402 (2014) PHYSICAL REVIEW LETTERS 29 AUGUST 2014

Compressive Direct Measurement of the Quantum Wave Function

Mohammad Mirhosseini,^{1,*} Omar S. Magaña-Loaiza,¹ Seyed Mohammad Hashemi Rafsanjani,² and Robert W. Boyd^{1,3}

ARTICLE

Received 22 Oct 2013 | Accepted 16 Dec 2013 | Published 20 Jan 2014

DOI: 10.1038/ncomms4115

Direct measurement of a 27-dimensional orbital-angular-momentum state vector

Mehul Malik^{1,2}, Mohammad Mirhosseini¹, Martin P.J. Lavery³, Jonathan Leach^{4,5}, Miles J. Padgett³ & Robert W. Boyd^{1,5}

Directly Measuring Entangled States

Université d'Ottawa

University of Ottawa

Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox

Joint measurement of X and every P

•Joint measurement of $\pi_x = |x\rangle\langle x|$ and $\pi_p = |p\rangle\langle p|$ gives the Kirkwood-Dirac Distribution: $D(x,p) = \langle \pi_x \pi_p \rangle = \text{Tr}[\pi_x \pi_p \rho]$

Direct Measurement of Mixed States: The Dirac Distribution

Bayesian Propagation of the Dirac Distribution

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012): Use Baye's law to propagate the Dirac Distribution

Move camera by Δz to allow the Dirac Distribution to evolve under free propagation before the strong measurement

• The experiment confirms that the Dirac Distribution evolves in much the same way that a classical probability distribution evolves

Bayes' Law and Weak Measurement

A. M. Steinberg, Phys. Rev. A, 52, 32 (1995):

Weakly measured probabilities (e.g. Dirac Dist.) satisfy Bayes' Law.

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012): Use Baye's law to propagate the Dirac Distribution (like in classical physics!)

1. Generalize Dirac Distribution (no longer anti-standard ordered):

$$\operatorname{Pq}_{D}(x,q,k,p) = \langle \delta(\mathbf{P}-p)\delta(\mathbf{K}-k)\delta(\mathbf{Q}-q)\delta(\mathbf{X}-x) \rangle$$

2. Use Baye's Law to propagate the Dirac Dist:

$$Pq_{AS}(x,k) = \sum_{x,p} Pq_{D}(x,q,k,p)$$
$$= \sum_{x,p} Pq_{D}(q,k|x,p) \cdot Pq_{AS}(x,p)$$

3. Use Eq 1 and the formula for the Dirac Dist to find the propagator:

$$\operatorname{Pq_{D}}(q,k|x,p) = \frac{\operatorname{Pq_{D}}(x,q,k,p)}{\operatorname{Pq_{AS}}(x,p)} = \frac{\langle p|k\rangle \langle k|q\rangle \langle q|x\rangle}{\langle p|x\rangle}$$

• The propagator is a weak conditional probability, made up of state overlaps

GS Thekkadath,..., JS Lundeen, PRL 117, 120401 (2016)

Lundeen & Resch, Phys. Lett. A, 334, 337 (2005)

 Any element of the density matrix is given by this expectation value on the pointers and system

Directly Measuring the Density Matrix

Jointly weakly measure X then P then X again ullet

Average result is $Tr[\pi_{x1} \pi_p \pi_{x2} \rho_{in}] = \rho_{in}(x_1, x_2)$ Theory: Lundeen & Bamber PRL 108, 070402 (2012).

Probability amplitude Re[p(V,V)] 0.8 $Re[\rho(V,H)]$ Im[ρ(V,H)] IR> (c) 80 120 40 160 1.2 Input state θ (deg) (b) Probability amplitude 0.8 0.4 (2) -0.4 40 80 120 160 Input state θ (deg)

 \square Re[$\rho(H,H)$]

- We can know any chosen element $\rho_{in}(x_1, x_2)$ of the density matrix e.g. a particular coherence, entanglement witnesses, etc.
- Experiment: GS Thekkadath,..., JS Lundeen, PRL 117, 120401 (2016)

Université d'Ottawa | University of Ottawa

HWP

QWP

Polarizer

PBS

PBD

Mirror

Another strategy to measure x and p

• Measure X on first copy of a particle and P on the second copy.

• Perfect copying forbidden by the *No cloning theorem*

Optimal Cloning: Quantum Mechanics only allows imperfect copies.

X and P Measurements using optimal copies

Optimal Cloning Device: the beamsplitter

- Consider two photons entering opposite ports of a beamsplitter
- When alike they always bunch, exiting one port together

Mixed state $\rho = I/2$ is $|\psi\rangle$ 50% of the time (perfect cloning)

And $|\psi^{\perp}\rangle$ 50% of the time (imperfection!)

Cloning and the SWAP Gate

• The SWAP gate S exchanges the state of two particles

• SWAP, S can be written in terms of symmetric projector (an **optimal cloner**!)

$$\frac{1}{2}(I + S) = \Pi^{+}$$

• Square root SWAP is $\sqrt{S} = 1/\sqrt{2} (I \pm i S) = \Pi^{\pm i}$

or $\Pi^{\pm i} = \Pi^+ \pm i \Pi^-$

 $\begin{aligned} &\text{Re}(D(x,p)) = \text{Prob}(x1, p2 | \Pi^+) - \text{Prob}(x1, p2 | \Pi^-) \\ &\text{Im}(D(x,p)) = \text{Prob}(x1, p2 | \Pi^{+i}) - \text{Prob}(x1, p2 | \Pi^{-i}) \end{aligned}$

• The Dirac Distribution is intimately related to symmetries in optimal cloning

Joint Measurements on Optimal Clones

• We strongly measure $X_a \& P_b$ simultaneously on clones in modes and b

Case 1: Optimal Cloning. Measure X and P on optimal clones

 $\operatorname{Prob}_1(X_a = x, Pb = p) = C + \operatorname{Re}(\operatorname{Tr}[\pi_x \pi_p \rho])$

Case 2: Mix cloning (Π^+ projection) with Π^- projection: $\Pi^- + i\Pi^+ = \sqrt{SWAP}$ gate

 $\operatorname{Prob}_2(X_a = x, Pb = p) = C - \operatorname{Im}(\operatorname{Tr}[\pi_x \pi_p \rho])$

$$\frac{\text{Prob}_{1} - \text{Prob}_{2}}{\text{The Dirac Distribution}} = D(x, p)$$

Joint Measurements on Optimal Clones

- We do optimal cloning on polarization states Measure S_z on one clone and S_x on its partner
- Result is a complex 2d distribution (the Dirac distribution) that is rigorously equivalent to quantum state.
- A cross-section of the 2d distribution is the input quantum state:

• The Fourier transform is the density matrix

 Just like in classical physics jointly measuring complementary observables gives the system state

Learn a bit about both X and P

3

Same as measurement of Q-function of a quantum state: $Q(\alpha = x + iP) = |\langle \psi | \alpha \rangle|^2$

Balanced measurement of X and P determines quantum state by its Q-function

Direct Measurements of Quasi Probability distributions

- Classical measurement of a phase-space point is a Dirac delta
- How does one translate this to a quantum measurement?

Université d'Ottawa | University of Ottawa

G. S. Agarwal and E. Wolf, Phys. Rev. D,2 (1970) pp. 2161–2186.

Quasi-Prob, Pq ₀	Ordering O	Dirac Delta, $\Delta_{\bar{O}}(x,p)$	Experiments & Theory
Q	Normal, N	$\Delta_{AN}(x,p) = \alpha\rangle\langle\alpha $	Shapiro, Yuen, Leonhardt
Wigner	Symmetric, W	$\Delta_W(x,p) = \Pi(x,p)$ the parity about point (x,p)	Banaszek, Haroche, Silberhorn, Smith
P	Anti-N,AN	$\Delta_N(x,p) \neq \text{observable}$	
Kirkwood-Dirac	Anti-standard	$\Delta_{AS}(x,p) = \mathbf{p}\rangle\langle\mathbf{p} \mathbf{x}\rangle\langle\mathbf{x} $	Lundeen, Boyd,

X-P ordered Quasi-Prob Distributions

Standard S:X to the left of PAnti-Standard AS:P to the left of X

$$\Delta_{AS}(x,p) = \{\delta^{(2)}(\mathbf{X}-x, \mathbf{P}-p)\}_{S}$$
$$= \delta(\mathbf{P}-p)\delta(\mathbf{X}-x,)$$
$$= |\mathbf{p}\rangle\langle \mathbf{p}||\mathbf{x}\rangle\langle \mathbf{x}|$$

 $Pq_{S}(x,p) = Tr[|p\rangle\langle p|x\rangle\langle x|\rho] = \langle p|x\rangle\langle x|\rho|p\rangle = D_{\rho}(x,p)$

 $q \equiv s + ip$ is a complex parameter that moves between all orderings continuously

G. S. Agarwal and E. Wolf, *Phys. Rev. D*,**2** (1970) pp. 2161–2186.

R.F. O'Connell and Lipo Wang, Physics Letters, 107A, p 9 (1985).

Compatibility with the Heisenberg Uncertainty Relation

- Weak measurements reduce disturbance at the expense of certainty.
- Do they trade precision in Δp for imprecision in Δx ?

Université d'Ottawa

University of Ottawa

• What does the POVM Π of the measurement look like in phase-space?

GS Thekkadath, F Hufnagel, JS Lundeen, New J Phys 20, 113034 (2018)

The POVM of Direct Measurement

- What observable is a "direct measurement" measuring?
- On any given trial, it projects on superposition of a position eigenstate and a momentum eigenstate

Weak measurement of $|x'\rangle\langle x'|$ Strong measurement of $|p'\rangle\langle p'|$ $|\delta\rangle = |x\rangle + c_{q,x,p}|p\rangle$

Measured pointer position, q

GS Thekkadath, F Hufnagel, JS Lundeen, New J Phys 20, 113034 (2018)

• Measurement is sharp in x and p! What about the Heisenberg Uncertainty Principle?

Uncertainty and Weak Measurement

- The weak measurement POVM Π is a projector, $|\pi(q)\rangle$.
 - Superposition of sharp states in x and p

 $\begin{array}{lll} \text{Measured pointer} & \text{Weak measurement} \\ \text{position, } q & \text{of } |x'\rangle\langle x'| & \text{measurement} \\ & \left|\pi(q)\right\rangle = |x'\rangle + \mathcal{P}(q)e^{ix'p'} |p'\rangle & \text{Strong} \\ & \text{measurement} \\ \text{of } |p'\rangle\langle p'| & \text{of } |p'\rangle\langle p'| \end{array}$

Predictability $\mathcal{P}(q)$ is our ability to predict whether the particle had x' given outcome q.

• In the double-slit experiment, predictability \mathcal{P} and visibility \mathcal{V} obey an uncertainty relation:

$$\mathcal{P}^2 + \mathcal{V}^2 \leq 1$$

 Weak measurement trades away predictability to reduce disturbance to the quantum coherence (i.e. visibility)
GS Thekkadath, F Hufnagel, JS Lundeen, New J Phys 20, 113034 (2018) Université d'Ottawa | University of Ottawa

Compatibility with the Heisenberg Uncertainty Relation

• What does the POVM Π of the measurement look like in phase-space?

GS Thekkadath, F Hufnagel, JS Lundeen, New J Phys 20, 113034 (2018)

• A single direct measurement trial does contain sharp features in both x and p while keeping $\Delta x \, \Delta p \geq \hbar/2$

Conclusions

- 1. Measurements of complementary variables by weak measurement or optimal cloning will directly give the system state.
- Only requires two bases and works with other photonic degrees of freedom (e.g. OAM, frequency, etc.) and systems (e.g. entangled, electrons, atoms), detectors POVMs, and processes.
- 3. Cloning and weak x-p measurements project onto superpositions of sharp states: $|\pi(q)\rangle = |x'\rangle + \mathcal{P}(q)e^{ix'p'} |p'\rangle$.
- 4. What other strategies could give ψ ? What uncertainties can we trade-off in joint measurements of x and p? What information do we gain?

Wavefunction: Lundeen Nature, 474, 188 (2011) Mixed States: Lundeen PRL 108, 070402 (2012), Bamber PRL 112, 070405 (2014),Thekkadath PRL 117, 120401 (2016), Thekkadath PRL 119, 050405 (2017) Heisenberg: Thekkadath NJP 20, 113034 (2018)

Canada Chaires Research de rechercl Chairs du Canada

Canada

Kraus Operators

POUP L'INNOVATIO

An Optical Explanation of the Measurement

• From interference with a flat reference wavefront one can also determine the wavefunction.

• Look at the apparatus as a self-referenced interferometer

Even more direct?

- We switch back and forth between measuring $\text{Im}[\psi(x)]$ and $\text{Re}[\psi(x)]$
- Can we measure both in each trial?

Université d'Ottawa | University of Ottawa

Even more direct: Simultaneous readout

- Solution: Weak measurements do not disturb each other
 - : Weakly measure twice in row, once for $\text{Im}[\psi(x)]$ and once $\text{Re}[\psi(x)]$
- Need two readouts (i.e. 'pointers') or a two-dimensional readout.

Université d'Ottawa University of Ottawa

Joint measurements of AB

- Measurements of the product of observables AB are used to measure the density matrix ullet
- Normally, this would require a three-system interaction ullet
- Instead, measure A and B separately and look at correlations in the readouts ۲

A and B are observables on two particles: Theory: Lundeen, Resch, Physics Letters A, 334, 337-344 (2005) Experiment: Lundeen, Steinberg, PRL 102,

A and B are observables on the same particle, potentially non-commuting: Theory: Lundeen, Bamber, PRL 108, 070402 Experiment: GS Thekkadath,..., JS Lundeen,

We can measure the average value of two non-commuting observables $\langle \hat{A}\hat{B} \rangle$

Université d'Ottawa | University of Ottawa

Better Joint Measurements of AB

- Needed one readout system ('pointer') per observable
- Here, only need a single readout system for multiple projectors, $|a\rangle\langle a|, |b\rangle\langle b|$
- But, need to measure more readout system observables

Appers Perspective the open journal for guantum science Quantum 5, 599 (2021).

Theory and experiment for resource-efficient joint weak-measurement

Aldo C. Martinez-Becerril¹, Gabriel Bussières¹, Davor Curic², Lambert Giner^{1,3}, Raphael A. Abrahao^{1,4}, and Jeff S. Lundeen^{1,4}

Université d'Ottawa | University of Ottawa

Even more direct: Simultaneous readout

- Want simple (i.e. 'direct') readout of a single pointer system
- Solution: Measure B scaled by the outcome of the measurement of A
- Condition the strength of the measurement of B on the outcome of A.

Theory: Lundeen, Bamber, PRL 108, 070402 (2012) Experiment in progress by Thomas Bailey