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Find the Wavefunction 

(or Wigner Function) 

most compatible with 

those measurements.
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Quantum State Tomography

x=Esin

p=Ecos

Wavefunction of an Electric Field

• Proposed by K. Vogel. and H. Risken, Phys. Rev. A 40: 2487 (1989).

• Demonstrated by Mike Raymer: Phys. Rev. Lett. 70, 1244 (1993).

• Reconstruction is effective and well developed but indirect.



p 8 - “we cannot measure position and momentum simultaneously 

and precisely… What we do see are only the different aspects of a 

quantum object, the "quantum shadows" in the sense of Plato's 

famous parable” 

p 98. - “Consequently, we can not see quantum states 

directly...”



Cannot directly observe a quantum particle’s state

• Heisenberg’s measurement-disturbance relation:

Δx Δp ≥ ħ/2

• A classical particle’s state is given by its position x and momentum p

Joint measurements of x and p

XKCD

Are there strategies to get around this?



Outline
1. Direct Measurement of the wavefunction using weak 

measurement

2. Generalizations: Kirkwood-Dirac, Entangled States,…

3. Other direct measurement methods: Cloning

4. Understanding what is happening in direct 
measurement
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• Measure x precisely and we cause p→∞

➢ Can not know x and p perfectly at the same time

Example of the Heisenberg measurement-disturbance relation

What if we decrease our certainty of x ?



• What if we do a weak measurement of X, and then make a strong 

measurement of P?

i.e. A = |xx|=π, Initial state= |ψ, Strong measurement result P=p

Average shift of 

the pointer:

πw= p|xx|ψ
p|ψ

And if p=0, =  k·ψ(x)

Gently measure X so that you don’t disturb P

• The average shift of the pointer (i.e. rotation of the polarization) is 

proportional to the wavefunction

πw=
√Prob(p=0)

1/√2π ∙x|ψ

<b|A|y>
AW=

<b|y>

< |A|y>
AW=

< |y>

Lundeen Nature, 474, 188 (2011)
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Direct Measurement of the Wavefunction
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(      - )  Im(x)

LHC
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(      - )  Re(x)

+

• Weakly measure |xx| then strongly measure p

• Keep only the photons found with p=0 (post-selection!)
Imbalance in circular 

polarizations

Rotation of linear 

polarization

Beam

Splitter

• The average result of the weak measurement is the real and 

imaginary components of the wavefunction



|ψ

Im[ψ]
Re[ψ]

• Demonstrate method with Ψ 𝑥 of photons exiting a single-mode fibre

Phase

Prob(x)|ψ(x)|2

Lundeen Nature, 474, 188 (2011)

Direct Measurement of the Wavefunction

• The two signals directly give Im[ψ] and Re[ψ].
• Direct measurement accurately shows phase and magnitude of ψ(x)

(      - )  Im(x)

(      - )  Re(x)



Testing other wavefunctions phase 
profiles

|ψ

Phase Curvature
Phase Gradient

Lundeen Nature, 474, 188 (2011)



Why it is Direct

1. It is local - measures ψ(x) at x

2.No complicated mathematical reconstruction

3.The value of ψ(x) appears right on our measurement 

apparatus

4.The procedure is simple and general - measure x 

and then p



An operational definition of the wavefunction

• Currently there is no definition of the wavefunction.

• Clarity can come from “Operational” definitions of physical concepts. 

• i.e. the set of operations used in the lab to observe something.
Bridgman, P. The Logic of Modern Physics (1927).

“The wavefunction is the average result of a weak measurement of a variable 
followed by a strong measurement of the complementary variable”



• Test Particles (i.e. m→0, C→0) helped establish the existence of 

Electric and Magnetic Fields.

• Test measurement (i.e. weak measurement) might be similarly useful.



• Standard tomography: Measurement bases scale with dimension
• Direct Measurement: Measurements in only two bases always



Directly Measuring Entangled States

BS1-

BS2-

O-

C-

BS1+
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I+

e+ e-
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D+C+ D-

W
BS1-

BS2-
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BS1+

BS2+

I+

e+ e-

I-
O+
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W

|ψ =  1      |IO + 1     |OI -1 |OO + 0     |II

Theoretical Quantum State:

|ψ = πIOW |IO + πOIW |OI + πOOW |OO + πIIW |II
Direct measurement of the Quantum State:

|ψ = 0.663 |IO + 0.721 |OI -0.758 |OO + 0.243|II
Experimentally we got:

• Direct measurement of the wavefunction works for inherently 

quantum systems (i.e. entangled particles).

measure e.g. πIO =  |Inner OuterInner Outer| = |IOIO| 

• Weakly measure where the particle pair is in Hardy’s Paradox
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Joint measurement of X and every P

•Joint measurement of 𝜋𝑥 = |𝑥𝑥| and 𝜋𝑝 = |𝑝𝑝| gives the Kirkwood-Dirac Distribution:

 𝐷 𝑥, 𝑝 = 𝜋𝑥 𝜋𝑝 = Tr[𝜋𝑥 𝜋𝑝 𝜌]

Polarizer + λ/4 = 45°, - 45°, RHS, LHS

Weak 

measurement of 

|xx| 

Strong 

measurement of p 

(all values)

Lundeen PRL 108, 

070402 (2012), 

Bamber PRL 112, 

070405 (2014)

Salvail et al. Nature 

Photonics (2013)



Direct Measurement of Mixed States: The Dirac Distribution
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Fourier 

Transform

p → x’

Dirac Distribution,𝐷(𝑥, 𝑝) = Tr[𝜋𝑥 𝜋𝑝 𝜌]
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• Simple generalization allows us to completely measure mixed states

Lundeen PRL 108, 

070402 (2012), 

Bamber PRL 112, 

070405 (2014),



Bayesian Propagation of the Dirac Distribution

Move camera by Δz to allow the Dirac Distribution to evolve under free propagation before the strong 

measurement
T

h
e
o
re

ti
c
a
l 

P
re

d
ic

ti
o
n

E
x
p
e
ri
m

e
n
ta

l 

D
ir
a
c
 D

is
t.

Δz

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):

Use Baye’s law to propagate the Dirac Distribution

• The experiment confirms that the Dirac Distribution evolves in much the same way that a classical 

probability distribution evolves  



Bayes’ Law and Weak Measurement
A. M. Steinberg, Phys. Rev. A, 52, 32 (1995): 

Weakly measured probabilities (e.g. Dirac Dist.) satisfy Bayes’ Law.

1. Generalize Dirac Distribution (no longer anti-standard ordered): 

2. Use Baye’s Law to propagate the Dirac Dist:

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012):

Use Baye’s law to propagate the Dirac Distribution (like in classical physics!)

3. Use Eq 1 and the formula for the Dirac Dist to find the propagator:

• The propagator is a weak conditional probability, made up of state overlaps



Direct Measurement of the Density Matrix

𝜌 =
𝐻𝐻 𝐻𝑉
𝑉𝐻 𝑉𝑉

Use two sequential weak measurements and then a 
strong one to obtain each density matrix element

Rotate bases 
to 45o/-45o

Weak Meas. 
in H/V
(in y)

Weak Meas. 
in 45o/-45o 

(in x)

Strong Meas. 
In H/V 

Polarization 
being shifted 
in first weak 
measurement

Polarization 
on which the 
strong 
measurement 
is done

GS Thekkadath,…, JS Lundeen, PRL 117, 120401 (2016)



Experimental Setup

1. Prepare mixed or 
pure polarization 
states

4.  Measure pointer’s 
momentum/position in 
the x and y directions 

2.  Two sequential 
weak measurements

3.  Final strong 
measurement

ρ(I,J) = 〈ax ay πJ〉 /2, where a is the lowering operator

• Any element of the density matrix is given by this expectation value on the pointers 
and system

Lundeen & Resch, Phys. Lett. A, 334, 337 (2005)



Average result is Tr[πx1 πp πx2 ρin] = ρin(x1,x2)

• Jointly weakly measure X then P then X again

Theory: Lundeen & Bamber PRL 108, 070402 (2012).

|x1x1| |x2x2|

πx1 πx2

|pp|

πpρin

• We can know any chosen element ρin(x1,x2) of the density matrix 
e.g. a particular coherence, entanglement witnesses, etc.

Experiment: GS 
Thekkadath,…, JS 
Lundeen, PRL 117, 
120401 (2016)

Directly Measuring the Density Matrix



{β}
ρ

State

Density matrix

Process

Kraus Operators

Measurement

POVMs

{Πβ}{Ki}

IN CHANNEL DETECTOR

^ ^ ^

RESULTS

Lundeen Nature, 
474, 188 (2011)



Another strategy to measure x and p

• Perfect copying forbidden by the No cloning theorem

• Measure X on first copy of a particle and P on the second copy.

Ψ

Ψ

Ψ

|Ψ1 → |Ψ1 |Ψ2

x

p

Optimal Cloning: Quantum Mechanics only allows imperfect copies.



X and P Measurements using optimal copies

Optimal Cloning Device: the beamsplitter

|ψ

ρ12
clones

Maximally mixed state, ρ=I/d
d is the dimension

50:50 BS

• Consider two photons entering opposite ports of a beamsplitter
• When alike they always bunch, exiting one port together 

Irvine,…, 92, 047902, 
Bouwmeester, PRL (2004) 

Mixed state ρ=I/2 is |ψ 
50% of the time 
(perfect cloning)

And |ψ┴ 50% of the 
time (imperfection!)



Cloning and the SWAP Gate
• The SWAP gate S exchanges the state of two particles

|ψ

|ϕ |ψ

|ϕ

½(I + S) = Π+

• Square root SWAP is S = 1/2 (I ± i S) = Π±i

• SWAP, S can be written in terms of symmetric projector (an optimal cloner!)

or Π±i = Π+ ± i Π-

Re(D(x,p)) = Prob(x1, p2| Π+) – Prob(x1, p2| Π-)

Im(D(x,p)) = Prob(x1, p2| Π+i) – Prob(x1, p2| Π-i)

• The Dirac Distribution is intimately related to symmetries in optimal cloning 



Joint Measurements on Optimal Clones

Prob1 (𝑋𝑎 = 𝑥, 𝑃𝑏 = 𝑝) = 𝐶 + Re Tr 𝜋𝑥 𝜋𝑝 𝜌

Case 2: Mix cloning (Π+ projection) with Π- projection:  

Π- + iΠ+ = √SWAP gate 

• We strongly measure Xa & Pb simultaneously on clones in modes and b

Case 1: Optimal Cloning. Measure X and P on optimal clones

I/d ρ

Cernoch et 
al. PRL 
100,180501
(2008)

Prob1 – Prob2 = Tr[𝜋𝑥 𝜋𝑝 𝜌] = 𝐷(𝑥, 𝑝)

The Dirac Distribution

Hofman, 
PRL 109, 
020408 
(2012)

Prob2 𝑋𝑎 = 𝑥, 𝑃𝑏 = 𝑝 = 𝐶 − Im Tr 𝜋𝑥 𝜋𝑝 𝜌



• A cross-section of the 2d distribution is the 
input quantum state:

• The Fourier transform is the density matrix

• Just like in classical physics jointly measuring complementary observables gives 
the system state

G. S. Thekkadath et al. 
PRL 119, 050405 (2017)

• We do optimal cloning on polarization states

Measure Sz on one clone and Sx on its partner

• Result is a complex 2d distribution (the Dirac distribution) that is rigorously 
equivalent to quantum state.

Joint Measurements on Optimal Clones



Learn a bit about both X and P

Same as measurement of Q-function of a quantum state: Q (α=x+iP) = |ψ|α|2

Balance coupling strength to two pointers 

for simultaneous measurement of X and P

|ψ

• Uncertainty in x and p are equal: Δx = Δp 

Balanced measurement of X and P determines quantum state by its Q-function

P

x

p

X

|α

|ψ

Δp

Δx

Phase Space 

Measurement

Quantum State

Shapiro, Yuen

LO (Laser beam)

Quantum State |ψ

→ X=x-

- → P=p

LO

“Eight-Port” 

Homodyne

Leonhardt



Direct Measurements of Quasi Probability distributions

P

X
x

p

Operator anti-

ordering Ō

P

X
x

p

Classical Quantum

What is this

observable?

Quasi-Prob, PqO Ordering O Dirac Delta, ΔŌ(x,p) Experiments & Theory

Q Normal, N ΔAN(x,p) = |αα| Shapiro, Yuen, Leonhardt

Wigner Symmetric, W ΔW(x,p) = П(x,p)

the parity about point (x,p)

Banaszek, Haroche, 

Silberhorn, Smith

P Anti-N,AN ΔN(x,p)≠observable

Kirkwood-Dirac Anti-standard ΔAS(x,p) = |pp||xx| Lundeen, Boyd,…

G. S. Agarwal and E. Wolf, Phys. Rev. D,2 (1970) pp. 2161–2186.

PqO (x,p) = Tr[ΔŌ (x,p) ρ]

• Classical measurement of a phase-space point is a Dirac delta

• How does one translate this to a quantum measurement? 



X-P ordered Quasi-Prob Distributions 

Standard S:             X to the left of P

Anti-Standard AS:   P to the left of X

ΔAS(x,p) = {δ(2)(X-x, P-p)}S

               = δ(P-p)δ(X-x,)

= |pp||xx|

PqS (x,p) = Tr[|pp|xx| ρ] = p|xx| ρ |p = Dρ(x,p) 

W

P

Q

D D*

Constellation of Quasi-Prob Distibutions

XP

a† a

a a†

PX
XP+PX

aa† + a†a

G. S. Agarwal and E. Wolf, Phys. 

Rev. D,2 (1970) pp. 2161–2186.

R.F. O’Connell and Lipo Wang, 

Physics Letters, 107A, p 9 (1985).

𝑠 
p
a
ra

m
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te

r

𝑝 parameter

𝑞 ≡ 𝑠 + 𝑖𝑝 is a complex 
parameter that moves 
between all orderings 
continuously



Compatibility with the Heisenberg Uncertainty Relation

GS Thekkadath, F 
Hufnagel, JS Lundeen, New 
J Phys 20, 113034 (2018)

• Weak measurements reduce disturbance at the expense of certainty.
• Do they trade precision in Δp for imprecision in Δx?
• What does the POVM Π of the measurement look like in phase-space?

p

x
x'

p'

m
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e
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position



• What observable is a “direct measurement” measuring?

• On any given trial, it projects on superposition of a position eigenstate and a momentum 
eigenstate

ൿۧ|𝛿 = |𝑥 + 𝑐𝑞,𝑥,𝑝| ۧ𝑝

GS Thekkadath, F Hufnagel, 

JS Lundeen, New J Phys 20, 

113034 (2018)

Measured pointer 

position, q

Weak measurement 

of ۧ|𝑥′ |′𝑥ۦ

Strong 

measurement 

of ۧ|𝑝′ |′𝑝ۦ

The POVM of Direct Measurement

• Measurement is sharp in x and p! What about the Heisenberg Uncertainty Principle? 



Uncertainty and Weak Measurement
• The weak measurement POVM Π is a projector, ۧ|𝜋(𝑞) .

➢ Superposition of sharp states in x and p

ൿۧ|𝜋(𝑞) = |𝑥′ + 𝒫(𝑞)𝑒𝑖𝑥′𝑝′ | ۧ𝑝′

GS Thekkadath, F Hufnagel, JS Lundeen, 
New J Phys 20, 113034 (2018)

Measured pointer 
position, q

Predictability 𝒫(𝑞) is our ability to predict whether the particle had x’ given 
outcome q.

Weak measurement 
of ۧ|𝑥′ |′𝑥ۦ

Strong 
measurement 
of ۧ|𝑝′ |′𝑝ۦ

• In the double-slit experiment, predictability 𝒫 and visibility 𝒱 obey an 
uncertainty relation: 

𝒫2 + 𝒱2 ≤ 1

• Weak measurement trades away predictability to reduce disturbance to the 
quantum coherence (i.e. visibility)

E    ¼    ½    ¾    F

q



GS Thekkadath, F Hufnagel, 
JS Lundeen, New J Phys 20, 
113034 (2018)

Wigner Function of Π for measurement at x’=p’=0

• What does the POVM Π of the measurement look like in phase-space?

• A single direct measurement trial does contain sharp features in 
both x and 𝑝 while keeping Δx Δp ≥ ħ/2

m
o
m

e
n
tu

m

position

Compatibility with the Heisenberg Uncertainty Relation



Conclusions
1. Measurements of complementary variables by weak measurement or optimal 

cloning will directly give the system state.

2. Only requires two bases and works with other photonic degrees of freedom 
(e.g. OAM, frequency, etc.) and systems (e.g. entangled, electrons, atoms), 
detectors POVMs, and processes.

3. Cloning and weak x-p measurements project onto superpositions of sharp 
states: ൿۧ|𝜋(𝑞) = |𝑥′ + 𝒫(𝑞)𝑒𝑖𝑥′𝑝′ | ۧ𝑝′ .

4. What other strategies could give ψ? What uncertainties can we trade-off in joint 
measurements of x and p? What information do we gain?

Wavefunction: Lundeen Nature, 474, 188 (2011)
Mixed States: Lundeen PRL 108, 070402 (2012), Bamber PRL 112, 070405 
(2014),Thekkadath PRL 117, 120401 (2016), Thekkadath PRL 119, 050405 (2017)
Heisenberg: Thekkadath NJP 20, 113034 (2018)



An Optical Explanation of the Measurement
• From interference with a flat reference wavefront one can also determine the 

wavefunction.



Φ=eikx

x

x
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• Look at the apparatus as a self-referenced interferometer
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Even more direct?

• We switch back and forth between measuring Im[𝜓 𝑥 ] and Re 𝜓 𝑥
• Can we measure both in each trial?
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Even more direct: Simultaneous readout

• Solution: Weak measurements do not disturb each other 
∴ Weakly measure twice in row, once for Im[𝜓 𝑥 ] and once Re 𝜓 𝑥

• Need two readouts (i.e. ‘pointers’) or a two-dimensional readout.



Joint measurements of AB

A and B are observables on the same 
particle, potentiallly non-commuting: 
Theory: Lundeen, Bamber, PRL 108, 070402 
(2012)
Experiment: GS Thekkadath,…, JS Lundeen, 
PRL 117, 120401 (2016)
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A and B are observables on two particles:
Theory: Lundeen, Resch, Physics Letters A, 
334, 337-344 (2005)
Experiment: Lundeen, Steinberg, PRL 102, 
020404 (2009)

• Measurements of the product of observables AB are used to measure the density matrix
• Normally, this would require a three-system interaction
• Instead, measure A and B separately and look at correlations in the readouts

• We can measure the average value of two non-commuting observables መ𝐴 𝐵



Quantum 5, 599 (2021).
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Better Joint Measurements of AB 

• Needed one readout system (‘pointer’) per observable 
• Here, only need a single readout system for multiple projectors, ۧ𝑎 𝑎ۦ , ۧ𝑏 𝑏ۦ
• But, need to measure more readout system observables



System 
Identical 

Ensemble

Measurement 
Interaction, 𝑈

System
Post-

selection

Weak 
Measurement 

ReadoutM
et

h
o

d

ۧ|𝜑ۧ|𝜓

ො𝑞2

Si
m

u
lt

an
eo

u
ss

Im
[𝜓

𝑥
]

an
d

 R
e

𝜓
𝑥

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓

ۧ|𝜓
ൿห𝜉1 ൿห𝜉2 Re መ𝐴 𝐵

𝑊

Even more direct: Simultaneous readout

• Want simple (i.e. ‘direct’) readout of a single pointer system
• Solution: Measure B scaled by the outcome of the measurement of A
• Condition the strength of the measurement of B on the outcome of A.

መ𝐴 𝐵

ො𝑞1

Theory: Lundeen, Bamber, PRL 108, 070402 (2012)
Experiment in progress by Thomas Bailey
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