Geometry of the Kirkwood-Dirac-positive states

Christopher Langrenez

joint work with David R. M. Arvidsson-Shukur \& Stephan De Bièvre arXiv:2306.00086

QUIDIQUA, Lille, France

10 November 2023

Laboratoire
Paul Painlevé

The Kirkwood-Dirac (KD) distribution: definition

- \mathcal{H} : Hilbert space of finite dimension d. $\left(\left|a_{i}\right\rangle\right)_{i \in \llbracket 1, d \rrbracket}$ and $\left(\left|b_{j}\right\rangle\right)_{j \in \llbracket 1, d \rrbracket}$ two orthonormal bases of $\mathcal{H} . U_{i j}=\left(\left\langle a_{i} \mid b_{j}\right\rangle\right)$ transition matrix.
- Examples :
$\rightarrow d=2,(|0\rangle,|1\rangle)$ and $(|+\rangle,|-\rangle)$;
$\rightarrow d \geqslant 2$, think of U as Discrete Fourier Transform (DFT).
- The Kirkwood(1933)-Dirac(1945) quasiprobability distribution of ρ :

$$
\begin{gathered}
\forall(i, j) \in \llbracket 1, d \rrbracket^{2}, Q_{i j}(\rho)=\left\langle b_{j} \mid a_{i}\right\rangle\left\langle a_{i}\right| \rho\left|b_{j}\right\rangle \in \mathbb{C} . \\
\sum_{i=1}^{d} Q_{i j}(\rho)=\left\langle b_{j}\right| \rho\left|b_{j}\right\rangle, \sum_{j=1}^{d} Q_{i j}(\rho)=\left\langle a_{i}\right| \rho\left|a_{i}\right\rangle \text { and } \sum_{i, j} Q_{i j}(\rho)=1 .
\end{gathered}
$$

- Analogous to the Wigner function. However, more flexible as not designed only for position and momentum.

KD positivity

- ρ is a KD-positive state if $Q_{i j}(\rho) \geqslant 0$ for all $(i, j) \in \llbracket 1, d \rrbracket^{2}$.

Examples: $Q_{k l}\left(\left|a_{1}\right\rangle\left\langle a_{1}\right|\right)=\delta_{1, k}\left|\left\langle a_{1} \mid b_{l}\right\rangle\right|^{2} .\left|a_{1}\right\rangle\left\langle a_{1}\right|$ KD-positive.
$\mathcal{A}=\left\{\left|a_{i}\right\rangle\left\langle a_{i}\right| \mid i \in \llbracket 1, d \rrbracket\right\}$ and $\mathcal{B}=\left\{\left|b_{j}\right\rangle\left\langle b_{j}\right| \mid j \in \llbracket 1, d \rrbracket\right\}$ KD-positive.

$$
\mathcal{E}_{\mathrm{KD}+} \text { is the set of KD-positive states. }
$$

- $\mathcal{E}_{\mathrm{KD}+}$ is convex : if $\rho_{1}, \rho_{2} \in \mathcal{E}_{\mathrm{KD}+}$, for $\lambda \in[0,1], \lambda \rho_{1}+(1-\lambda) \rho_{2} \in \mathcal{E}_{\mathrm{KD}+}$.

GOAL: obtain a precise/complete description of the geometry of $\mathcal{E}_{\mathrm{KD}+}$.

- KD-nonpositive states linked with quantum advantages

Geometry of convex sets (1)

- A convex set: the segment between two points in the set lies in the set.

CONVEX OR NOT CONVEX?

Geometry of convex sets (2)

- A convex set: the segment between two points in the set lies in the set.

CONVEX

CONVEX

Geometry of convex sets (3)

- A convex set: The segment between two points in the set lies in the set.

- ρ is extreme: if $\rho=\lambda \rho_{1}+(1-\lambda) \rho_{2}$ then $\rho_{1}=\rho$ and $\rho_{2}=\rho$.

Theorem (Krein-Milman)
K is convex, closed and bounded $\Rightarrow K=\operatorname{conv}\left(K^{\text {ext }}\right)$
where $K^{\text {ext }}$ is the set of extreme points of K and conv () is the convex hull.

Geometry of convex sets (4)

- A convex set: The segment between two points in the set lies in the set.

- $\operatorname{conv}\left(K_{\text {ext }}\right)=\bigcup_{n \in \mathbb{N}^{*}}\left\{\sum_{p=1}^{n} \lambda_{p} \rho_{p}, \rho_{p} \in K_{\text {ext }}, \sum_{p=1}^{n} \lambda_{p}=1, \lambda_{p} \geqslant 0\right\}$
- The decomposition may not be unique !

Looking for the extreme points of $\mathcal{E}_{\mathrm{KD}+}(1)$

- KD distribution: $Q_{i j}(\rho)=\left\langle b_{j} \mid a_{i}\right\rangle\left\langle a_{i}\right| \rho\left|b_{j}\right\rangle$.
- The extreme points of the set of quantum states $=$ the pure states.
- FACT: Pure KD positive states are extreme states of $\mathcal{E}_{\mathrm{KD}+}$.
- Denote by $\mathcal{E}_{\mathrm{KD}+}^{\text {pure }}$ the set of pure KD positive states.
- $\mathcal{A}=\left\{\left|a_{i}\right\rangle\left\langle a_{i}\right| \mid i \in \llbracket 1, d \rrbracket\right\} \subset \mathcal{E}_{\mathrm{KD}+}^{\text {pure }} ; \mathcal{B}=\left\{\left|b_{j}\right\rangle\left\langle b_{j}\right| \mid j \in \llbracket 1, d \rrbracket\right\} \subset \mathcal{E}_{\mathrm{KD}+}^{\text {pure }}$.

$$
\mathcal{A} \cup \mathcal{B} \subsetneq \mathcal{E}_{\mathrm{KD}+}^{\text {pure }} \subsetneq \mathcal{E}_{\mathrm{KD}+}^{\text {ext }} .
$$

- Difficulty: the space of quantum states has dimension d^{2} where $d=\operatorname{dim}(\mathcal{H})$.

Looking for the extreme points of $\mathcal{E}_{\mathrm{KD}+}(2)$

$$
\operatorname{conv}(\mathcal{A} \cup \mathcal{B}) \subsetneq \operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {pure }}\right) \subsetneq \mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {ext }}\right)
$$

- Difficulty 1: Find or rule out the existence of pure KD-positive states that are not basis states (points like C).
- Difficulty 2: Find or rule out the existence of mixed KD-positive states (points like D).

Looking for extreme points of $\mathcal{E}_{\mathrm{KD}+}$ (3)

$$
\operatorname{conv}(\mathcal{A} \cup \mathcal{B}) \subsetneq \operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {pure }}\right) \subsetneq \mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {ext }}\right) .
$$

- Difficulty 1: Find or rule out the existence of pure KD-positive states that are not basis states (points like C).
- Difficulty 2: Find or rule out the existence of mixed extreme KD-positive states (points like D).

Main results: the case $d=2$ (qubits)

$$
\text { If } U_{i j}=\left\langle a_{i} \mid b_{j}\right\rangle \neq 0 \text { for all }(i, j) \in \llbracket 1, d \rrbracket
$$

$$
\begin{gathered}
\mathcal{A}=\{|0\rangle\langle 0|,|1\rangle\langle 1|\} \\
\mathcal{B}=\{|+\rangle\langle+|,|-\rangle\langle-|\}
\end{gathered}
$$

$$
\mathcal{A}=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}
$$

$\mathcal{A}=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$
$\mathcal{B}=\{|\phi\rangle\langle\phi|,|\psi\rangle\langle\psi|\}$

$$
\operatorname{conv}(\mathcal{A} \cup \mathcal{B})=\mathcal{E}_{\mathrm{KD}+}
$$

Main results: the case $d=3$, random bases

Theorem (C.L, D.R.M. Arvidsson-Shukur, S. De Bièvre, arXiv June 2023)
The equality

$$
\mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}(\mathcal{A} \cup \mathcal{B})
$$

holds for an open dense set of unitary matrices in dimension 3.

- Take two random bases \mathcal{A} and \mathcal{B} (choose a random unitary matrix);
- With probability 1 , one then has $\mathcal{E}_{\text {KD }+}=\operatorname{conv}(\mathcal{A} \cup \mathcal{B})$.

Main results: the case $d=3$, spin 1

- Two bases: $\mathcal{A}=$ eigenvectors of J_{3} and $\mathcal{B}=$ eigenvectors of $\vec{n} \cdot \vec{\jmath}$ with $\|\vec{n}\|_{2}=1$.

$$
\mathcal{A} \cup \mathcal{B} \subsetneq \mathcal{E}_{\mathrm{KD}+} .
$$

- There exist at least one point like C or D !

Main results: the case $d=3$, spin 1

- $\mathcal{A}=$ eigenvectors of J_{3} and $\mathcal{B}=$ eigenvectors of $\vec{n} \cdot \vec{\jmath}$ with $\vec{n}=\frac{1}{3}\left(\begin{array}{lll}2 & 2 & -1\end{array}\right)$.

$$
\operatorname{conv}(\mathcal{A} \cup \mathcal{B}) \subsetneq \operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {pure }}\right) \subsetneq \mathcal{E}_{\mathrm{KD}+} .
$$

- There exist extreme states of $\mathcal{E}_{\mathrm{KD}+}$ that are mixed !
- There exist states that are KD positive BUT all their convex decompositions contain at least one pure state that is not KD positive.
- This situation also occurs in dimension $d=2^{n}$ for all $n>2$.

Main results: DFT in dimension $d \geqslant 2$

Theorem (C.L, D.R.M. Arvidsson-Shukur, S. De Bièvre, arXiv June 2023) The equality

$$
\mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}(\mathcal{A} \cup \mathcal{B})
$$

holds if the transition matrix is the DFT matrix in prime dimension.

- For non prime dimensions, $\mathcal{A} \cup \mathcal{B} \subsetneq \mathcal{E}_{\mathrm{KD}+}^{\text {pure }}$ [J. Xu, arXiv 2023].
- Question for non prime dimensions: $\mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}\left(\mathcal{E}_{\mathrm{KD}+}^{\text {pure }}\right)$?

Take home messages

What did we do ?

- Identified situations where $\mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}(\mathcal{A} \cup \mathcal{B})$: problem solved!
- Found KD-positive states that cannot be decomposed as convex combinations of KD-positive pure states.

What is left to do?

- Conjecture: $\mathcal{E}_{\mathrm{KD}+}=\operatorname{conv}(\mathcal{A} \cup \mathcal{B})$ for a set of probability 1 in all dimensions.
- Need to construct witnesses and measures for KD-positivity.

Work in progress.

THANK YOU FOR YOUR ATTENTION!

