
Quantum Measurements
with Quasiprobabilities

Justin Dressel
Institute for Quantum Studies, Chapman University

 
QuiDiQua Conference, 2023/11/10

1



Classical Field Theory

How do we measure what the
Electric Field is at some point  in
space?

x

We put a "test charge" at 
and look at its response.

x

Electric Field:   ≡E
q

F

q→0

We take the weak interaction limit where the test charge is small, so the
field we are measuring is not disturbed by the test charge itself.
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Quantum Theory
Yakir Aharonov:  
"Let's do exactly the same thing with quantum theory."

Probe charge:   s.t. 

System: 
Interaction: 
 
Response:

 
Mean velocity per charge yields:

∣ϕ⟩ ⟨ ⟩ =x̂ 0

∣ψ⟩

=Ĥ q ⊗Â p̂

e ∣ψ⟩∣ϕ⟩ =−iqt /ℏÂp̂ dx∣a⟩∣x⟩ ⟨a∣ψ⟩ ⟨x−∑a
∫ qat∣ϕ⟩

=
q

∂ ⟨ ⟩t x̂

q→0

∣⟨a∣ψ⟩∣ a =
a

∑ 2 ⟨ ⟩Â
Expectation value of  measured without

probe disturbing the system (much).
Â
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Postselecting Quantum Theory
Yakir Aharonov:  
"Let's do exactly the same thing with quantum theory,
but also add a final postselection measurement." 
System Postselection: 
 
Small test charge response:

 
Mean velocity per charge yields:

⟨f ∣

⟨f ∣e ∣ψ⟩∣ϕ⟩−iqt /ℏÂp̂ ≈ ⟨f ∣ψ⟩(1 − iqtA /ℏ)∣ϕ⟩w p̂

≈ ⟨f ∣ψ⟩ dx∣x⟩ ⟨x− qA t∣ϕ⟩∫ w

=
q

∂ ⟨ ⟩t x̂

q→0

ReA ≡w Re
⟨f ∣ψ⟩
⟨f ∣ ∣ψ⟩Â

The expectation value of  conditioned on a
final postselection  is a weak value.

Â

⟨f ∣

Aharonov et al. PRL 19884



Weak Value:
A "conditioned expectation value" measured in the weak interaction ("test charge") limit.

A ≡w =
⟨f ∣ψ⟩
⟨f ∣ ∣ψ⟩Â

∣⟨f ∣ψ⟩∣2
⟨ψ∣f⟩⟨f ∣ ∣ψ⟩Â

An expectation value is partitioned into a convex mixture of weak values,
each specific to a particular "postselection".

⟨A⟩ ≡ ⟨ψ∣ ∣ψ⟩ =Â ⟨ψ∣f⟩⟨f ∣ ∣ψ⟩ =
f

∑ Â ∣⟨f ∣ψ⟩∣ =
f

∑ 2

⟨f ∣ψ⟩
⟨f ∣ ∣ψ⟩Â

P A

f

∑ f ∣ψ w,f

Weak values are not necessarily constrained by the spectrum of the operator .Â
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Kirkwood-Dirac Quasiprobabilities:
The "conditioned probabilities" that average the eigenvalues of  are quasiprobabilities.Â

A ≡w =
∣⟨f ∣ψ⟩∣2

⟨ψ∣f⟩⟨f ∣ ∣ψ⟩Â
a =

a

∑
∣⟨f ∣ψ⟩∣2

⟨ψ∣f⟩⟨f ∣a⟩⟨a∣ψ⟩
a

a

∑
Pf ∣ψ

Qa,f ∣ψ

The Kirkwood-Dirac quasiprobabilities are conditioned by the postselection likelihoods.

Q ≡a,f ∣ψ ⟨ψ∣f⟩⟨f ∣a⟩⟨a∣ψ⟩ = ∣Q ∣ ea,f ∣ψ
iS

The phase is a geometric Berry/Pancharatnam phase determined by the
oriented area enclosed by geodesics connecting three quantum states.

Classically compatible states enclose zero area.
Non-zero phases encode dynamical incompatibility
and a temporal directionality for closing the loop.

2S∣ψ⟩

∣a⟩

∣f⟩ Hofmann, NJP 20116



Dynamical
Weak Values

Due to their close connection to the
geometry of quantum state space,
weak values (and thus the KD QP) can
appear even without making any
explicit weak measurements.
 
Let's explore several examples.

7



∣E ⟩ =Ĥ k E ∣E ⟩k k

( +Ĥ )∣E ⟩ =Δ̂ j
′ E ∣E ⟩j

′
j
′

⟨E ∣( +j
′ Ĥ )∣E ⟩ =Δ̂ k E ⟨E ∣E ⟩ =j

′
j
′

k E ⟨E ∣E ⟩ +k j
′

k ⟨E ∣ ∣E ⟩j
′ Δ̂ k

E −j
′ E =k ⟨E ∣E ⟩j

′
k

⟨E ∣ ∣E ⟩j
′ Δ̂ k

Measurable energy shifts caused by a perturbation
are always (purely real) weak values.
"Strange weak values" outside the spectrum of the
perturbation are very common.

JD, PRA 91 032116 (2015)

Trivial Example of Dynamical Weak Values:
When a perturbation is added to a Hamiltonian,
the energy spectra will shift by weak values of
the perturbation.
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Nontrivial Example: Circuit QED

=Ĥ +
2
ωq
σ̂z ω +r â

†â χσ̂z â
†â

At steady state, the balance of pump and decay
from the resonator leaves the qubit entangled with
distinct coherent states in the resonator:

Dispersive Coupling Hamiltonian:

∣Ψ⟩ = c ∣0⟩∣ψ ⟩ +0 0 c ∣1⟩∣ψ ⟩1 1

This reduced state qubit coherence evolves as:

ρ (t) =01 c c ⟨ψ ∣ψ ⟩1
∗
0 1 0

The coherence of the reduced qubit state is thus:

∂ ρ (t) =t 01 i[ω +q 2χn ]ρ (t)w 01

n ≈w 1 + i ≡
κ2
4ε2 [

κ

4χ] +n̄ i
κ

4χn̄

Photon number weak value!

Real part : AC Stark shift
 
Imaginary part : ensemble dephasing

Δω =q 2χRen =w 2χn̄

Γ = 2χ Imn =w
κ

8χ2n̄

JD, PRA 91 032116 (2015)

For pump  and decay rate , the steady states yield:ε κ
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iℏ∂ ∣ψ(t)⟩ =t + V ( ) ∣ψ(t)⟩[
2m
p̂2

x̂ ]Schrodinger Equation:

Hamilton's Principle Function : S(t,x) ≡ −iℏ ln⟨x∣ψ(t)⟩

p (t,x) ≡w ∂ S(t,x) =x =
ψ(t,x)

−iℏ∂ ψ(t,x)x

⟨x∣ψ(t)⟩
⟨x∣ ∣ψ(t)⟩p̂

Momentum defined in the usual way is the weak value of the momentum operator:

Schrodinger's Equation is equivalent to a quantum Hamilton-Jacobi Equation:

∂ S(t,x) +t H [t,x, p (t,x)] =w w 0

ReH [t,x, p(t,x)] =w +
2m

(Re p (t,x))w
2

V (x) +Q(x)

Imaginary part is a continuity equation for probability. Real part is classical HJ Equation:

Q(x) = =
⟨x∣ψ(t)⟩

⟨x∣( − Re p (t,x)) ∣ψ(t)⟩p̂ w
2

−
2m
ℏ2

∣ψ(x, t)∣
∂ ∣ψ(x, t)∣x
2

"Quantum Potential": Weak Variance of
momentum away from mean weak value

Nontrivial example: Hamilton-Jacobi Theory

H [t,x, p (t,x)] =w w ⟨x∣ψ⟩
⟨x∣ /2m+ V ( )∣ψ⟩p̂2 x̂

Real part: Bohmian momentum
Imaginary part: Nelson Osmotic momentum

JD, PRA 91 032116 (2015)
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Nontrivial example: Classical field
streamlines

Weak values also appear as physical properties of a
classical field, even when there is not an obvious "weak
measurement" at the level of individual field quanta.

Momentum weak value proportional to the local (orbital
part of the) Poynting vector   of an optical field, scaled
by the frequency  and energy density .

This can be measured and used to reconstruct "averaged
trajectories" for the mean momentum streamlines.
 
The average local momentum corresponds to the local
optical pressure felt by small probe particles, and thus the
momentum part of the stress-energy tensor.

SO

ω W

Kocsis et al., Science (2011) 
Bliokh et al. NJP (2013)

Rep(r) = Re =
⟨x∣ψ⟩
⟨x∣ ∣ψ⟩p̂

c2
ω

W (r)
S (r)o
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Nontrivial Example: Bessel beams

Both real and imaginary parts of this local momentum
average also describe physical properties of classical
"vortex beams" like Bessel beams.

p (r) =w ⟨x∣ψ⟩
⟨x∣ ∣ψ⟩p̂

The real part of the momentum weak value appears as
the circulating local orbital momentum that can be
transferred to probe particles by pushing them around
in circular orbits.
 
The imaginary part is directed radially and confines the
optical intensity into concentric rings, similarly trapping
probe particles to orbit only within the optical rings.

Bliokh et al., NJP (2013) 12



Quantum Field Theory

Boundary conditions:

Past time :  
Future time : 

tI ∣I⟩
tF ⟨F ∣

"Test charge" current:

Intermediate time : 
Take limit as 

t J(x)
J → 0

But wait, there's more!
Schwinger taught us to do exactly the
same thing in quantum field theory to
probe mean (classical) fields and their
correlations

Schwinger, PR (1951) 13



QFT: Classical Mean Fields
Generating Functional:
    

Effective Action:
    

W [J ] = −iℏ ln⟨F ∣ [J ]∣I⟩Û

Γ[φ] =W [J ] − d xJ(x)φ(x)∫ 4

"Classical" Field:

φ(x) ≡ =
δJ(x)
δW [J ]

J→0
⟨F (t)∣I(t)⟩

⟨F (t)∣ (x)∣I(t)⟩φ̂

"Classical" Equation of Motion:

    =
δφ(x)
δΓ[φ]

−J(x) → 0

All classical fields according to QFT are
weak values of the field operators.JD, PRL (2014) 14



Summary
Weak values are prevalent in the quantum formalism,

even without performing weak measurements,
which means that Kirkwood-Dirac quasiprobabilities are also!

Conditioned average of weakly measured observable
Spectral shifts due to perturbations
Ensemble-averaged dynamical parameters
Classical mean field properties
Classical limit for observable values
...and many more examples

Thank you!
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