Quantum Measurements with Quasiprobabilities

Justin Dressel Institute for Quantum Studies, Chapman University

QuiDiQua Conference, 2023/11/10

CHAPMAN INSTITUTE FOR UNIVERSITY QUANTUM STUDIES

Classical Field Theory

How do we **measure** what the Electric Field is at some point *x* in space?

We put a "**test charge**" at *x* and look at its *response*.

Electric Field:
$$\left.ec{E}\equivrac{ec{F}}{q}
ight|_{q
ightarrow 0}$$

We take the **weak interaction limit** where *the test charge is small*, so the field we are measuring is **not disturbed** by the test charge itself.

Quantum Theory

Yakir Aharonov:

"Let's do *exactly the same thing* with quantum theory."

Probe charge: $|\phi
angle~$ s.t. $\langle \hat{x}
angle = 0$ System: $|\psi
angle$ Interaction: $\hat{H} = q\hat{A}\otimes\hat{p}$

Response:

 $e^{-iqt\hat{A}\hat{p}/\hbar}|\psi
angle|\phi
angle=\sum_{a}\int dx|a
angle|x
angle\left\langle a|\psi
angle\left\langle x-qat|\phi
angle
ight
angle$

Mean velocity per charge yields:

$$\left.rac{\partial_t \langle \hat{x}
angle}{q}
ight|_{q
ightarrow 0} = \sum_a |\langle a|\psi
angle|^2 a = \langle \hat{A}
angle$$

Expectation value of \hat{A} measured without probe disturbing the system (much).

Postselecting Quantum Theory

Yakir Aharonov:

"Let's do *exactly the same thing* with quantum theory, but also *add a final postselection measurement*."

System Postselection: $\langle f|$

Small test charge response:

$$egin{aligned} &\langle f|e^{-iqt\hat{A}\hat{p}/\hbar}|\psi
angle|\phi
anglepprox\langle f|\psi
angle(1-iqtA_w\hat{p}/\hbar)|\phi
angle\ pprox\langle f|\psi
angle\int dx|x
angle\;\langle x-qA_wt|\phi
angle \end{aligned}$$

Mean velocity per charge yields:

$$\left.rac{\partial_t \langle \hat{x}
angle}{q}
ight|_{q
ightarrow 0} = \mathrm{Re} A_w \equiv \mathrm{Re} rac{\langle f | \hat{A} | \psi
angle}{\langle f | \psi
angle}$$

The expectation value of \hat{A} conditioned on a final postselection $\langle f |$ is a **weak value**.

Aharonov et al. PRL 1988

Weak Value:

A "conditioned expectation value" measured in the *weak interaction* ("test charge") limit.

$$A_w\equiv rac{\langle f|\hat{A}|\psi
angle}{\langle f|\psi
angle}=rac{\langle \psi|f
angle\!\langle f|\hat{A}|\psi
angle}{|\langle f|\psi
angle|^2}$$

An expectation value is partitioned into a convex mixture of weak values, each specific to a particular "postselection".

$$\langle A
angle \equiv \langle \psi | \hat{A} | \psi
angle = \sum_f \langle \psi | f
angle \langle f | \hat{A} | \psi
angle = \sum_f |\langle f | \psi
angle |^2 rac{\langle f | \hat{A} | \psi
angle}{\langle f | \psi
angle} = \sum_f P_{f|\psi} \, A_{w,f}$$

Weak values are *not necessarily constrained* by the spectrum of the operator \hat{A} .

Kirkwood-Dirac Quasiprobabilities:

The "conditioned probabilities" that average the eigenvalues of \hat{A} are quasiprobabilities.

$$A_w\equivrac{\langle\psi|f
angle\!\langle f|\hat{A}|\psi
angle}{|\langle f|\psi
angle|^2}=\!\!\sum_a arac{\langle\psi|f
angle\!\langle f|a
angle\!\langle a|\psi
angle}{|\langle f|\psi
angle|^2}=\!\!\sum_a arac{Q_{a,f|\psi}}{P_{f|\psi}}$$

The Kirkwood-Dirac quasiprobabilities are *conditioned* by the postselection likelihoods.

$$Q_{a,f|\psi}\equiv ig\langle\psi|f
angle\!\langle f|a
angle\!\langle a|\psi
angle=|Q_{a,f|\psi}|\,e^{iS}$$

The phase is a **geometric Berry/Pancharatnam phase** determined by the *oriented area* enclosed by *geodesics* connecting three quantum states.

Classically compatible states enclose zero area. Non-zero phases encode *dynamical* incompatibility and a *temporal directionality* for closing the loop.

Hofmann, NJP 2019

Dynamical Weak Values

Due to their close connection to the geometry of quantum state space, weak values (and thus the KD QP) can appear **even without making any explicit weak measurements**.

Let's explore several examples.

 $\langle E_j'|(\hat{H}+\hat{\Delta})|E_k
angle=E_j'\langle E_j'|E_k
angle=E_k\langle E_j'|E_k
angle+\langle E_j'|\hat{\Delta}|E_k
angle$

$$E_j'-E_k=rac{\langle E_j'|\hat{\Delta}|E_k
angle}{\langle E_j'|E_k
angle}$$

Measurable energy shifts caused by a perturbation are always (purely real) weak values.

"Strange weak values" outside the spectrum of the perturbation are *very common*.

JD, PRA 91 032116 (2015)⁸

Nontrivial Example: Circuit QED

For pump ε and decay rate κ , the steady states yield:

$$n_w pprox rac{4arepsilon^2}{\kappa^2} \left[1+irac{4\chi}{\kappa}
ight] \equiv ar{n}+irac{4\chiar{n}}{\kappa}\,,$$

• Real part : AC Stark shift

$$\Delta \omega_q = 2 \chi \operatorname{Re} n_w = 2 \chi ar n$$

Γ

• Imaginary part : ensemble dephasing

$$=2\chi\,{
m Im}\,n_w={8\chi^2ar n\over\kappa}$$

Dispersive Coupling Hamiltonian:

$$\hat{H} = rac{\omega_q}{2} \hat{\sigma}_z + \omega_r \hat{a}^\dagger \hat{a} + \chi \hat{\sigma}_z \hat{a}^\dagger \hat{a}$$

At **steady state**, the balance of pump and decay from the resonator leaves the qubit entangled with distinct coherent states in the resonator:

$$|\Psi
angle=c_{0}|0
angle|\psi_{0}
angle+c_{1}|1
angle|\psi_{1}
angle$$

The **coherence** of the **reduced qubit state** is thus:

$$ho_{01}(t)=c_1^*c_0\langle\psi_1|\psi_0
angle$$

This **reduced state** qubit coherence evolves as:

$$\partial_t
ho_{01}(t) = i [\omega_q + 2\chi\,n_w]
ho_{01}(t)$$
 \uparrow
Photon number **weak value**!

JD, PRA 91 032116 (2015)9

Nontrivial example: Hamilton-Jacobi Theory

Schrodinger Equation: $i\hbar\partial_t |\psi(t)
angle = \left[rac{\hat{p}^2}{2m} + V(\hat{x})
ight] |\psi(t)
angle$

Hamilton's Principle Function : $S(t,x)\equiv -i\hbar\ln\langle x|\psi(t)
angle$

Momentum *defined in the usual way* is the **weak value** of the momentum operator:

$$p_w(t,x)\equiv \partial_x S(t,x)=rac{-i\hbar\partial_x\psi(t,x)}{\psi(t,x)}=rac{\langle x|\hat{p}|\psi(t)
angle}{\langle x|\psi(t)
angle}$$

Real part: Bohmian momentum Imaginary part: Nelson Osmotic momentum

Schrodinger's Equation is equivalent to a **quantum Hamilton-Jacobi Equation**:

$$\partial_t S(t,x) + H_w[t,x,p_w(t,x)] = 0 \qquad \qquad H_w[t,x,p_w(t,x)] = rac{\langle x|\hat{p}^2/2m + V(\hat{x})|\psi
angle}{\langle x|\psi
angle}$$

Imaginary part is a *continuity equation* for probability. Real part is *classical* HJ Equation:

$$\mathrm{Re} H_w[t,x,p(t,x)] = rac{(\mathrm{Re}\, p_w(t,x))^2}{2m} + V(x) + Q(x)$$

"Quantum Potential": *Weak Variance* of momentum away from mean weak value

$$Q(x)=rac{\langle x|(\hat{p}-{
m Re}\,p_w(t,x))^2|\psi(t)
angle}{\langle x|\psi(t)
angle}=-rac{\hbar^2}{2m}rac{\partial_x^2|\psi(x,t)|}{|\psi(x,t)|}$$

Nontrivial example: Classical field streamlines

Weak values also appear as **physical properties** of a classical field, even when there is not an obvious "weak measurement" at the level of individual field quanta.

$${
m Re}\,{f p}({f r})={
m Re}rac{\langle x|\hat{p}|\psi
angle}{\langle x|\psi
angle}=rac{\omega}{c^2}rac{S_o({f r})}{W({f r})}$$

Momentum weak value proportional to the local (orbital part of the) **Poynting vector** S_O of an optical field, scaled by the frequency ω and energy density W.

This can be *measured* and used to reconstruct "averaged trajectories" for the mean momentum streamlines.

The average local momentum corresponds to the local *optical pressure* felt by *small probe particles,* and thus the momentum part of the *stress-energy tensor.*

Kocsis et al., Science (2011) Bliokh et al. NJP (20^{†1}3)

Nontrivial Example: Bessel beams

Both *real* and *imaginary* parts of this local momentum average also describe physical properties of classical "vortex beams" like Bessel beams.

$$\mathbf{p}_w(\mathbf{r}) = rac{\langle x | \hat{p} | \psi
angle}{\langle x | \psi
angle}$$

The **real part** of the momentum weak value appears as the circulating local *orbital momentum* that can be transferred to probe particles by pushing them around in circular orbits.

The **imaginary part** is directed *radially* and *confines* the optical intensity into concentric rings, similarly trapping probe particles to orbit only within the optical rings.

Quantum Field Theory

But wait, there's more!

Schwinger taught us to do *exactly the same thing in quantum field theory* to probe *mean (classical)* fields and their *correlations*

"Test charge" current:

- Intermediate time t: J(x)
- Take limit as J
 ightarrow 0

Boundary conditions:

- Past time t_I : |I
 angle
- Future time t_F : $\langle F |$

QFT: Classical Mean Fields

JD, PRL (2014)

Summary

Weak values are prevalent in the quantum formalism, even without performing weak measurements, which means that *Kirkwood-Dirac quasiprobabilities* are also!

- Conditioned average of weakly measured observable
- Spectral shifts due to perturbations
- Ensemble-averaged dynamical parameters
- Classical mean field properties
- Classical limit for observable values
- ...and many more examples

Thank you!

CHAPMAN | INSTITUTE FOR UNIVERSITY | QUANTUM STUDIES

