
Billy Braasch | NIST, QuICS

The Kirkwood-Dirac Distribution:
Quantum Thermodynamics and Nonclassicality

[Mark Rothko]



̂ρ

B̂̂A

[Mark Rothko]



̂ρ

{ |bk⟩}{ |aj⟩}

[Mark Rothko]



Outline

1. Quantum Thermodynamics


• Classical fluctuation theorems


• Issues with quantizing fluctuation theorems


• Kirkwood-Dirac distributions enable quantization

2. Kirkwood-Dirac Physical Nonclassicality


• Contextuality as rigorous nonclassicality


• Kirkwood-Dirac distribution witness contextuality
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Three reasons to consider KD distributions

… in the context of thermodynamics:


(i) Avoiding disturbance


(ii) “KD averages” equal quantum expectation values


(iii) No-go theorems
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Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

(ii) Convexity-linearity in :ρ

p(Q |p1ρ1 + p2ρ2) = p1p(Q |ρ1) + p2p(Q |ρ2)

qρ
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= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )KD distribution satisfies both:

There exist no probability distributions that satisfy these requirements 
and also describe fluctuations of heat of work.
[Perarnau-Llobet2017, Lostaglio2022, Hernández-Gomez2022] 



∑
iA,iB

p̃jk = Tr(ΠfA, fBUρABU†), ∑
fA, fB

p̃jk = Tr(ΠiA,iBρAB), and ∑
j,k

p̃iA,iB, fA, fB = 1

(i) Proper marginals:

Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

(ii) Convexity-linearity in :ρ

p(Q |p1ρ1 + p2ρ2) = p1p(Q |ρ1) + p2p(Q |ρ2)

qρ
aj, fk

= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )KD distribution satisfies both:

There exist no probability distributions that satisfy these requirements 
and also describe fluctuations of heat of work.
[Perarnau-Llobet2017, Lostaglio2022, Hernández-Gomez2022] 

(iii) No-go theorems
Impossibility of probabilistic descriptions and quantum thermodynamic 
processes.



Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

qρ
aj, fk

= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )

(iii) No-go theorems
Impossibility of probabilistic descriptions and quantum thermodynamic 
processes.

(a) Marginals agree with the Born rule



Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

(b) Convexity-linearity in :ρ = p1ρ1 + p2ρ2

p(Q |p1ρ1 + p2ρ2) = p1p(Q |ρ1) + p2p(Q |ρ2)

qρ
aj, fk

= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )

(iii) No-go theorems
Impossibility of probabilistic descriptions and quantum thermodynamic 
processes.

(a) Marginals agree with the Born rule



Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

p(Q |p1ρ1 + p2ρ2) = p1p(Q |ρ1) + p2p(Q |ρ2)

qρ
aj, fk

= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )

There exist no probability distributions that satisfy these requirements 
and also describe fluctuations of heat.
[Perarnau-Llobet et al., PRL 118, 070601 (2017)]

(iii) No-go theorems
Impossibility of probabilistic descriptions and quantum thermodynamic 
processes.

[Lostaglio et al., Quantum 7, 1128 (2023)] 

[Hernández-Gomez et al., arXiv:2207.12960, (2022)] 

(b) Convexity-linearity in :ρ = p1ρ1 + p2ρ2

(a) Marginals agree with the Born rule



Reasonable requirements for stochastic descriptions of quantum 
fluctuations:

p(Q |p1ρ1 + p2ρ2) = p1p(Q |ρ1) + p2p(Q |ρ2)

qρ
aj, fk

= Tr( | fk⟩⟨ fk |aj⟩⟨aj |ρ )
Kirkwood-Dirac distributions satisfy both requirements.

There exist no probability distributions that satisfy these requirements 
and also describe fluctuations of heat.
[Perarnau-Llobet et al., PRL 118, 070601 (2017)]

(iii) No-go theorems
Impossibility of probabilistic descriptions and quantum thermodynamic 
processes.

[Lostaglio et al., Quantum 7, 1128 (2023)] 

[Hernández-Gomez et al., arXiv:2207.12960, (2022)] 

(b) Convexity-linearity in :ρ = p1ρ1 + p2ρ2

(a) Marginals agree with the Born rule



Thermodynamic applications
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Thermodynamic applications

• An extended KD distribution characterizes noncommuting 
quantities’ fluctuations.

[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

σα=x,y,z

[Majidy et al., Nat. Rev. Phys. (2023)]
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Where we are going

[Spekkens, PRA 71, 052108 (2005)]

(i) A type of realist model: ontological model


(ii) Notion of classicality: noncontextuality


(iii) Kirkwood-Dirac negativity and nonreality imply contextuality


[Pusey, PRL 113, 200401 (2014)]

[Kunjwal, Lostaglio, and Pusey, PRA 100, 042116 (2019)
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Ontological Models
Mk

M
P

Introduce the classical/ontic state space  with states .Λ λ ∈ Λ

Examples:

q

p

p(λ |P)

Example: response function for outcome


“the coin is heads up.”

1

1 0

0

H T

r(Mk |λ)



Ontological Models
Ontological model summary:


• ontic state space  with states 


• map 


• 


• map  such that


• for all , 


•

Λ λ ∈ Λ

ρ → p(λ |ρ)

∑
λ

p(λ |P) = 1

Mk → r(Mk |λ)

Mk r(Mk |λ) ≥ 0

∑
k

r(Mk |λ) = 1

[Spekkens, PRA 71, 052108 (2005)]



Ontological Models

The outcome statistics are .p(Mk |P) = ∑
λ

r(Mk |λ) p(λ |P)

Modeling a quantum experiment: .Tr(M̂kρ) = ∑
λ

r(M̂k |λ) p(λ |ρ)

Quantum measurements: positive operator-valued measure

{M̂k} such that ∑
k

M̂k = I

[Spekkens, PRA 71, 052108 (2005)]
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Kirkwood-Dirac contextuality proof

pNOM
− ≤

pF

2
+ pd =

pF

2
+ o(1/s)

KD negativity implies contextuality.
Also holds for KD nonreality.

[Kunjwal, Lostaglio, and Pusey, PRA 100, 042116 (2019)]
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Summary

Thanks for your attention!

Kirkwood-Dirac distributions…


• enable the quantization of results in stochastic thermodynamics


• provide a rigorous witness of nonclassicality

[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]





Noncontextuality and positive quasiprobabilities
Quasiprobability distributions are defined over measurable spaces.

Quantum experiment:

p(λ′￼|λ, C) p(Mk |λ′￼)

ρ C M

Nonnegative quasiprobability rep.: p(λ |P)

This implies that contextuality is equivalent to negative or nonreal 
quasiprobabilities in every representation of an experiment.



Nonclassicality in a thermodynamic setting

System Baths

Nonclassical work extraction.
Two-stroke cycle:


• Prepare nonequilib. steady-state 


• Disconnect baths and implement , 
generated by 

ρ

U(τ)
H0 + gV(t)

The work extracted in one cycle is 
the change of the energy’s 
expectation value:

WQ =
2gτ
ℏ

ImTr(ρXH0) + 𝒪(g2)

where  .X := (1/τ)∫
τ

0
VI(t)dt

[Lostaglio2020certifying]

For small enough , the averaged 
KD distribution  is not 
compatible with that in every NOM.

g
ImTr(ρXH0)


