
[Mark Rothko]
The Kirkwood-Dirac Distribution:
Quantum Thermodynamics and Nonclassicality
Billy Braasch | NIST, QuICS

[Mark Rothko]

[Mark Rothko]

Outline

1. Quantum Thermodynamics

- Classical fluctuation theorems
- Issues with quantizing fluctuation theorems
- Kirkwood-Dirac distributions enable quantization

2. Kirkwood-Dirac Physical Nonclassicality

- Contextuality as rigorous nonclassicality
- Kirkwood-Dirac distribution witness contextuality

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.
$\left\{\left|a_{j}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ and $\left\{\left|b_{k}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ are orthonormal bases in \mathscr{H}.

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.
$\left\{\left|a_{j}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ and $\left\{\left|b_{k}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ are orthonormal bases in \mathscr{H}.
ρ is a density matrix.

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.
$\left\{\left|a_{j}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ and $\left\{\left|b_{k}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ are orthonormal bases in \mathscr{H}.
ρ is a density matrix.
Kirkwood-Dirac quasiprobability:

$$
q^{\rho}\left(a_{j}, b_{k}\right):=\operatorname{Tr}\left(\left|b_{k}\right\rangle\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\right)=\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\left|b_{k}\right\rangle
$$

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.
$\left\{\left|a_{j}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ and $\left\{\left|b_{k}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ are orthonormal bases in \mathscr{H}.
ρ is a density matrix.
Kirkwood-Dirac quasiprobability:

$$
q^{\rho}\left(a_{j}, b_{k}\right):=\operatorname{Tr}\left(\left|b_{k}\right\rangle\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\right)=\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\left|b_{k}\right\rangle
$$

Expansion coefficients given a particular operator basis:

$$
\rho=\sum_{j, k} \frac{\left|a_{j}\right\rangle\left\langle b_{k}\right|}{\left\langle b_{k} \mid a_{j}\right\rangle} q^{\rho}\left(a_{j}, b_{k}\right)
$$

Kirkwood-Dirac Distribution

Complex Hilbert space \mathscr{H} of dimension d.
$\left\{\left|a_{j}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ and $\left\{\left|b_{k}\right\rangle\right\}_{j \in\{1, \ldots, d\}}$ are orthonormal bases in \mathscr{H}.
ρ is a density matrix.
Kirkwood-Dirac quasiprobability:

$$
q^{\rho}\left(a_{j}, b_{k}\right):=\operatorname{Tr}\left(\left|b_{k}\right\rangle\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\right)=\left\langle b_{k} \mid a_{j}\right\rangle\left\langle a_{j}\right| \rho\left|b_{k}\right\rangle
$$

Expansion coefficients given a particular operator basis:

$$
\rho=\sum_{j, k} \frac{\left|a_{j}\right\rangle\left\langle b_{k}\right|}{\left\langle b_{k} \mid a_{j}\right\rangle} q^{\rho}\left(a_{j}, b_{k}\right)
$$

Why $\left\{\left|a_{j}\right\rangle\right\}$ and $\left\{\left|b_{k}\right\rangle\right\}$?

Classical Exchange Fluctuation Theorem

A

B

Classical Exchange Fluctuation Theorem

A

$p\left(E^{\mathrm{A}}\right)=\frac{\exp \left(-\beta^{\mathrm{A}} E^{\mathrm{A}}\right)}{Z^{\mathrm{A}}}$

B

$$
p\left(E^{\mathrm{B}}\right)=\frac{\exp \left(-\beta^{\mathrm{B}} E^{\mathrm{B}}\right)}{Z^{\mathrm{B}}}
$$

Classical Exchange Fluctuation Theorem

Classical Exchange Fluctuation Theorem

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

$$
=\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}\right)}{Z^{\mathrm{A}}} \frac{\exp \left(-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{Z^{\mathrm{B}}}
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

$$
=\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}\right)}{Z^{\mathrm{A}}} \frac{\exp \left(-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{Z^{\mathrm{B}}}
$$

$$
=\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{f}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{f}}^{\mathrm{B}}\right)}
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

$$
=\frac{\exp \left(-\beta^{A} E_{\mathrm{i}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{f}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{f}}^{\mathrm{B}}\right)}
$$

$$
=\exp \left[\beta^{\mathrm{A}}\left(E_{\mathrm{f}}^{\mathrm{A}}-E_{\mathrm{i}}^{\mathrm{A}}\right)+\beta^{\mathrm{B}}\left(E_{\mathrm{f}}^{\mathrm{B}}-E_{\mathrm{i}}^{\mathrm{B}}\right)\right]
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\begin{aligned}
\gamma_{\mathrm{R}}(t) & :\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right) \\
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)} & =\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)} \\
& =\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{f}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{f}}^{\mathrm{B}}\right)} \\
& =\exp \left[\beta^{\mathrm{A}}\left(E_{\mathrm{f}}^{\mathrm{A}}-E_{\mathrm{i}}^{\mathrm{A}}\right)+\beta^{\mathrm{B}}\left(E_{\mathrm{f}}^{\mathrm{B}}-E_{\mathrm{i}}^{\mathrm{B}}\right)\right] \\
& =\exp \left[-\beta^{\mathrm{A}} Q+\beta^{\mathrm{B}} Q\right]
\end{aligned}
$$

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

$$
=\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{f}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{f}}^{\mathrm{B}}\right)}
$$

$$
=\exp \left[\beta^{\mathrm{A}}\left(E_{\mathrm{f}}^{\mathrm{A}}-E_{\mathrm{i}}^{\mathrm{A}}\right)+\beta^{\mathrm{B}}\left(E_{\mathrm{f}}^{\mathrm{B}}-E_{\mathrm{i}}^{\mathrm{B}}\right)\right]
$$

$$
=\exp \left[-\beta^{\mathrm{A}} Q+\beta^{\mathrm{B}} Q\right]
$$

$$
=\exp (\Delta \beta Q)
$$

[Jarzynski and Wójcik, PRL 92, 230602 (2004)]

Classical Exchange Fluctuation Theorem

Trajectories $\gamma_{\mathrm{F}}(t):\left(E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}} \mapsto E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}}\right)$

$$
\gamma_{\mathrm{R}}(t):\left(E_{\mathrm{f}}^{\mathrm{A}}, E_{\mathrm{f}}^{\mathrm{B}} \mapsto E_{\mathrm{i}}^{\mathrm{A}}, E_{\mathrm{i}}^{\mathrm{B}}\right)
$$

$$
\frac{p\left(\gamma_{\mathrm{F}}(t)\right)}{p\left(\gamma_{\mathrm{R}}(t)\right)}=\frac{p\left(\gamma_{\mathrm{F}}(0)\right)}{p\left(\gamma_{\mathrm{R}}(0)\right)}
$$

$$
=\frac{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{i}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{i}}^{\mathrm{B}}\right)}{\exp \left(-\beta^{\mathrm{A}} E_{\mathrm{f}}^{\mathrm{A}}-\beta^{\mathrm{B}} E_{\mathrm{f}}^{\mathrm{B}}\right)}
$$

$$
=\exp \left[\beta^{\mathrm{A}}\left(E_{\mathrm{f}}^{\mathrm{A}}-E_{\mathrm{i}}^{\mathrm{A}}\right)+\beta^{\mathrm{B}}\left(E_{\mathrm{f}}^{\mathrm{B}}-E_{\mathrm{i}}^{\mathrm{B}}\right)\right]
$$

$$
=\exp \left[-\beta^{\mathrm{A}} Q+\beta^{\mathrm{B}} Q\right]
$$

$$
=\exp (\Delta \beta Q)
$$

$$
\Longrightarrow\left(\beta^{\mathrm{B}}-\beta^{\mathrm{A}}\right)\langle Q\rangle \geq 0
$$

[Jarzynski and Wójcik, PRL 92, 230602 (2004)]

Quantization Issues?

A

$$
\rho^{\mathrm{A}}=\frac{\exp \left(-\beta^{\mathrm{A}} H^{\mathrm{A}}\right)}{Z^{\mathrm{A}}}
$$

Evolve according to energy conserving unitary $U:\left[U, H^{\mathrm{A}}+H^{\mathrm{B}}\right]=0$.

Quantization Issues?

A

$\rho^{\mathrm{A}}=\frac{\exp \left(-\beta^{\mathrm{A}} H^{\mathrm{A}}\right)}{Z^{\mathrm{A}}}$

Evolve according to energy conserving unitary $U:\left[U, H^{\mathrm{A}}+H^{\mathrm{B}}\right]=0$.
Access statistics associate with $\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}} \rightarrow U\left(\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}}\right) U^{\dagger}$: measure energies before and after the unitary is implemented.

Quantization Issues?

A

$$
\rho^{\mathrm{A}}=\frac{\exp \left(-\beta^{\mathrm{A}} H^{\mathrm{A}}\right)}{Z^{\mathrm{A}}}
$$

Evolve according to energy conserving unitary $U:\left[U, H^{\mathrm{A}}+H^{\mathrm{B}}\right]=0$.
Access statistics associate with $\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}} \rightarrow U\left(\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}}\right) U^{\dagger}$: measure energies before and after the unitary is implemented.

Same probability distributions in the classical setting.

Quantization Issues?

A

$$
\rho^{\mathrm{A}}=\frac{\exp \left(-\beta^{\mathrm{A}} H^{\mathrm{A}}\right)}{Z^{\mathrm{A}}}
$$

Evolve according to energy conserving unitary $U:\left[U, H^{\mathrm{A}}+H^{\mathrm{B}}\right]=0$.
Access statistics associate with $\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}} \rightarrow U\left(\rho^{\mathrm{A}} \otimes \rho^{\mathrm{B}}\right) U^{\dagger}$: measure energies before and after the unitary is implemented.

Same probability distributions in the classical setting.
What if the initial state is some arbitrary ρ^{AB} with thermal marginals?

Three reasons to consider KD distributions

... in the context of thermodynamics:
(i) Avoiding disturbance
(ii) "KD averages" equal quantum expectation values
(iii) No-go theorems

(i) Avoiding disturbance

General ρ^{AB} with thermal marginals.
Dephasing in the energy eigenbasis:

$$
\rho^{\mathrm{AB}} \rightarrow \sum_{j, k}\left(\Pi_{E_{j}}^{\mathrm{A}} \otimes \Pi_{E_{k}}^{\mathrm{B}}\right) \rho^{\mathrm{AB}}\left(\Pi_{E_{j}}^{\mathrm{A}} \otimes \Pi_{E_{k}}^{\mathrm{B}}\right)
$$

(i) Avoiding disturbance

To avoid the disturbance, we may weakly measure the initial energy.

(i) Avoiding disturbance

To avoid the disturbance, we may weakly measure the initial energy.
Strong measurements lead to the probability distribution

$$
p\left(E_{i_{A}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right)=\operatorname{Tr}\left(\Pi_{f_{\mathrm{A}}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}} \Pi_{i_{\mathrm{A}}, i_{\mathrm{B}}} U^{\dagger}\right) .
$$

(i) Avoiding disturbance

To avoid the disturbance, we may weakly measure the initial energy.
Strong measurements lead to the probability distribution

$$
p\left(E_{i_{A}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{A}}, E_{f_{\mathrm{B}}}\right)=\operatorname{Tr}\left(\Pi_{f_{A}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}} \Pi_{i_{A}, i_{\mathrm{B}}} U^{\dagger}\right) .
$$

Weak measurements lead to the Kirkwood-Dirac distribution

$$
q^{\rho}\left(E_{i_{A}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right)=\operatorname{Tr}\left(U^{\dagger} \Pi_{f_{A}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}}\right) .
$$

(ii) "KD averages" = quantum expectation values

Classically, Q is a random variable.

(ii) "KD averages" = quantum expectation values

Classically, Q is a random variable.
The average of Q is
$\langle Q\rangle=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right) Q=\sum_{E_{i_{\mathrm{B}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{h}^{\prime}}}, E_{f_{\mathrm{B}}}\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)\right.$

(ii) "KD averages" = quantum expectation values

Classically, Q is a random variable.
The average of Q is
$\langle Q\rangle=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{i_{A}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right) Q=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{\mathrm{A}^{\prime}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)$
The quantum expectation value can be expressed via the KD distribution:

$$
\langle Q\rangle=\operatorname{Tr}\left(U^{\dagger} H^{\mathrm{AB}} U \rho^{\mathrm{AB}}\right)-\operatorname{Tr}\left(H^{\mathrm{AB}} \rho^{\mathrm{AB}}\right)=\sum_{f_{\mathrm{A}_{\mathrm{A}}, f_{\mathrm{B}}, i_{A}, i_{\mathrm{B}}}} \operatorname{Tr}\left(U^{\dagger} \Pi_{f_{\mathrm{A}}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)
$$

(ii) "KD averages" = quantum expectation values

Classically, Q is a random variable.
The average of Q is
$\langle Q\rangle=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{i_{A}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right) Q=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{A^{\prime}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)$
The quantum expectation value can be expressed via the KD distribution:

$$
\begin{gathered}
\langle Q\rangle=\operatorname{Tr}\left(U^{\dagger} H^{\mathrm{AB}} U \rho^{\mathrm{AB}}\right)-\operatorname{Tr}\left(H^{\mathrm{AB}} \rho^{\mathrm{AB}}\right)=\sum_{f_{\mathrm{A}}, f_{\mathrm{B}}, i_{A}, i_{\mathrm{B}}} \operatorname{Tr}\left(U^{\dagger} \Pi_{f_{\mathrm{A}}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right) \\
\neq \sum_{f_{\mathrm{A}}, f_{\mathrm{B}}, i_{A}, i_{\mathrm{B}}} \underline{\operatorname{Tr}\left(\Pi_{f_{\mathrm{A}}, f_{B}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}} \Pi_{i_{\mathrm{A}}, i_{\mathrm{B}}} U^{\dagger}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)}
\end{gathered}
$$

(ii) "KD averages" = quantum expectation values

Classically, Q is a random variable.
The average of Q is
$\langle Q\rangle=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{A_{\mathrm{A}}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right) Q=\sum_{E_{i_{\mathrm{A}}}, E_{i_{\mathrm{B}}}, E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}} p\left(E_{i_{i_{A}}}, E_{i_{\mathrm{B}}} \rightarrow E_{f_{\mathrm{A}}}, E_{f_{\mathrm{B}}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)$
The quantum expectation value can be expressed via the KD distribution:
$\langle Q\rangle=\operatorname{Tr}\left(U^{\dagger} H^{\mathrm{AB}} U \rho^{\mathrm{AB}}\right)-\operatorname{Tr}\left(H^{\mathrm{AB}} \rho^{\mathrm{AB}}\right)=\sum_{f_{A_{A}, f_{\mathrm{B}}, i_{A}, i_{\mathrm{B}}}} \operatorname{Tr}\left(U^{\dagger} \Pi_{f_{\mathrm{A}}, f_{\mathrm{B}}} U \Pi_{i_{A}, i_{\mathrm{B}}} \rho^{\mathrm{AB}}\right)\left(E_{f_{\mathrm{B}}}-E_{i_{\mathrm{B}}}\right)$

Marginals agree with the Born rule:
$\sum_{i_{A}, i_{\mathrm{B}}} q^{\rho}=\operatorname{Tr}\left(\Pi_{f_{\mathrm{A}}, f_{\mathrm{B}}} U \rho^{\mathrm{AB}} U^{\dagger}\right), \quad \sum_{f_{\mathrm{A}}, f_{\mathrm{B}}} q^{\rho}=\operatorname{Tr}\left(\Pi_{i_{\mathrm{A}}, i_{\mathrm{B}}} \rho^{\mathrm{AB}}\right), \quad$ and $\quad \sum_{i_{A}, i_{\mathrm{B}}, f_{A}, f_{B}} q^{\rho}=1$

(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.

(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.

Reasonable requirements for stochastic descriptions of quantum fluctuations:

(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.

Reasonable requirements for stochastic descriptions of quantum fluctuations:
(a) Marginals agree with the Born rule

(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.
Reasonable requirements for stochastic descriptions of quantum fluctuations:
(a) Marginals agree with the Born rule
(b) Convexity-linearity in $\rho=p_{1} \rho_{1}+p_{2} \rho_{2}$:

$$
p\left(Q \mid p_{1} \rho_{1}+p_{2} \rho_{2}\right)=p_{1} p\left(Q \mid \rho_{1}\right)+p_{2} p\left(Q \mid \rho_{2}\right)
$$

(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.
Reasonable requirements for stochastic descriptions of quantum fluctuations:
(a) Marginals agree with the Born rule
(b) Convexity-linearity in $\rho=p_{1} \rho_{1}+p_{2} \rho_{2}$:

$$
p\left(Q \mid p_{1} \rho_{1}+p_{2} \rho_{2}\right)=p_{1} p\left(Q \mid \rho_{1}\right)+p_{2} p\left(Q \mid \rho_{2}\right)
$$

There exist no probability distributions that satisfy these requirements and also describe fluctuations of heat.

```
[Perarnau-Llobet et al., PRL 118, 070601 (2017)]
[Lostaglio et al., Quantum 7, 1128 (2023)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```


(iii) No-go theorems

Impossibility of probabilistic descriptions and quantum thermodynamic processes.
Reasonable requirements for stochastic descriptions of quantum fluctuations:
(a) Marginals agree with the Born rule
(b) Convexity-linearity in $\rho=p_{1} \rho_{1}+p_{2} \rho_{2}$:

$$
p\left(Q \mid p_{1} \rho_{1}+p_{2} \rho_{2}\right)=p_{1} p\left(Q \mid \rho_{1}\right)+p_{2} p\left(Q \mid \rho_{2}\right)
$$

There exist no probability distributions that satisfy these requirements and also describe fluctuations of heat.

```
[Perarnau-Llobet et al., PRL 118, 070601 (2017)]
[Lostaglio et al., Quantum 7, 1128 (2023)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```

Kirkwood-Dirac distributions satisfy both requirements.

Thermodynamic applications

- Negative and nonreal KD quasiprobabilities signal nonclassical heat and work flows.

```
[Levy and Lostaglio, PRX Quantum 1, 010309 (2020)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```


Thermodynamic applications

- Negative and nonreal KD quasiprobabilities signal nonclassical heat and work flows.

```
[Levy and Lostaglio, PRX Quantum 1, 010309 (2020)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```

KD distributions can be extended: $\operatorname{Tr}\left(\Pi_{j_{k}}^{K} \ldots \Pi_{j_{1}}^{A} \rho\right)$

```
[Yunger Halpern, Swingle, Dressel, PRA 97, 042105 (2018)]
```


Thermodynamic applications

- Negative and nonreal KD quasiprobabilities signal nonclassical heat and work flows.

```
[Levy and Lostaglio, PRX Quantum 1, 010309 (2020)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```

KD distributions can be extended: $\operatorname{Tr}\left(\Pi_{j_{k}}^{K} \ldots \Pi_{j_{1}}^{A} \rho\right)$

$$
\text { [Yunger Halpern, Swingle, Dressel, PRA 97, } 042105 \text { (2018)] }
$$

- Provides a robust witness for scrambling of quantum information.

$$
\text { [González Alonso et al., PRL 122, } 040404 \text { (2019)] }
$$

Thermodynamic applications

- Negative and nonreal KD quasiprobabilities signal nonclassical heat and work flows.

```
[Levy and Lostaglio, PRX Quantum 1, 010309 (2020)]
[Hernández-Gomez et al., arXiv:2207.12960, (2022)]
```

KD distributions can be extended: $\operatorname{Tr}\left(\Pi_{j_{k}}^{K} \ldots \Pi_{j_{1}}^{A} \rho\right)$

$$
\text { [Yunger Halpern, Swingle, Dressel, PRA 97, } 042105 \text { (2018)] }
$$

- Provides a robust witness for scrambling of quantum information.

$$
\text { [González Alonso et al., PRL 122, } 040404 \text { (2019)] }
$$

- Featured in the analogue of a thermodynamic fluctuation theorem.

$$
\text { [Yunger Halpern, PRA 95, } 012120 \text { (2017)] }
$$

Thermodynamic applications

- An extended KD distribution characterizes noncommuting quantities' fluctuations.

[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

Thermodynamic applications

- An extended KD distribution characterizes noncommuting quantities' fluctuations.

[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

Thermodynamic applications

- An extended KD distribution characterizes noncommuting quantities' fluctuations.

[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

Thermodynamic applications

- An extended KD distribution characterizes noncommuting quantities' fluctuations.
[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

[Majidy et al., Nat. Rev. Phys. (2023)]

Nonclassicality

Nonclassicality

We need a precise notion of classical behavior.

Nonclassicality

We need a precise notion of classical behavior.
Specify a general type of classical model whose predictions are empirically falsifiable.

Nonclassicality

We need a precise notion of classical behavior.
Specify a general type of classical model whose predictions are empirically falsifiable.

Following Bell: quantum theory is incompatible with local hiddenvariable models.

Nonclassicality

We need a precise notion of classical behavior.
Specify a general type of classical model whose predictions are empirically falsifiable.

Following Bell: quantum theory is incompatible with local hiddenvariable models.

Where we are going

(i) A type of realist model: ontological model
[Spekkens, PRA 71, 052108 (2005)]

Where we are going

(i) A type of realist model: ontological model
(ii) Notion of classicality: noncontextuality
[Spekkens, PRA 71, 052108 (2005)]

Where we are going

(i) A type of realist model: ontological model
(ii) Notion of classicality: noncontextuality
(iii) Kirkwood-Dirac negativity and nonreality imply contextuality

```
[Spekkens, PRA 71, 052108 (2005)]
[Pusey, PRL 113, 200401 (2014)]
[Kunjwal, Lostaglio, and Pusey, PRA 100, 042116 (2019)
```


Ontological Models

Theory independent!

Ontological Models

Introduce the classical/ontic state space Λ with states $\lambda \in \Lambda$.
Examples:

Ontological Models

Introduce the classical/ontic state space Λ with states $\lambda \in \Lambda$.
Examples:

Ontological Models

$p(\lambda \mid P)$

$r\left(M_{k} \mid \lambda\right)$

Introduce the classical/ontic state space Λ with states $\lambda \in \Lambda$.
Examples:

Example: response function for outcome "the coin is heads up."

Ontological Models

Ontological model summary:

- ontic state space Λ with states $\lambda \in \Lambda$
- map $\rho \rightarrow p(\lambda \mid \rho)$
- $\sum_{\lambda} p(\lambda \mid P)=1$
- map $M_{k} \rightarrow r\left(M_{k} \mid \lambda\right)$ such that
- for all $M_{k}, r\left(M_{k} \mid \lambda\right) \geq 0$
- $\sum_{k} r\left(M_{k} \mid \lambda\right)=1$

Ontological Models

The outcome statistics are $p\left(M_{k} \mid P\right)=\sum_{\lambda} r\left(M_{k} \mid \lambda\right) p(\lambda \mid P)$.
Quantum measurements: positive operator-valued measure

$$
\left\{\hat{M}_{k}\right\} \text { such that } \sum_{k} \hat{M}_{k}=I
$$

Modeling a quantum experiment: $\operatorname{Tr}\left(\hat{M}_{k} \rho\right)=\sum_{\lambda} r\left(\hat{M}_{k} \mid \lambda\right) p(\lambda \mid \rho)$.

Noncontextuality

国国国 …国

Noncontexłuality

Noncontextuality

国国国 …国

$$
p\left(M_{k} \mid P_{1}\right)=p\left(M_{k} \mid P_{2}\right)=p\left(M_{k} \mid P_{3}\right), \forall k
$$

Noncontextuality

$p\left(M_{k} \mid P_{1}\right)=p\left(M_{k} \mid P_{2}\right)=p\left(M_{k} \mid P_{3}\right), \forall k$
A reasonable assumption: indistinguishability is due to ontological equality.

Noncontextuality

$$
p\left(M_{k} \mid P_{1}\right)=p\left(M_{k} \mid P_{2}\right)=p\left(M_{k} \mid P_{3}\right), \forall k
$$

A reasonable assumption: indistinguishability is due to ontological equality.

$$
p\left(\lambda \mid P_{1}\right)=p\left(\lambda \mid P_{2}\right)=p\left(\lambda \mid P_{3}\right)
$$

Noncontextuality

$$
p\left(M_{k} \mid P_{1}\right)=p\left(M_{k} \mid P_{2}\right)=p\left(M_{k} \mid P_{3}\right), \forall k
$$

A reasonable assumption: indistinguishability is due to ontological equality.

$$
p\left(\lambda \mid P_{1}\right)=p\left(\lambda \mid P_{2}\right)=p\left(\lambda \mid P_{3}\right)
$$

This assumption is that of noncontextuality.

Noncontextuality

$$
p\left(M_{k} \mid P_{1}\right)=p\left(M_{k} \mid P_{2}\right)=p\left(M_{k} \mid P_{3}\right), \forall k
$$

A reasonable assumption: indistinguishability is due to ontological equality.

$$
p\left(\lambda \mid P_{1}\right)=p\left(\lambda \mid P_{2}\right)=p\left(\lambda \mid P_{3}\right)
$$

This assumption is that of noncontextuality.
[Spekkens, PRA 71, 052108 (2005)]

Kirkwood-Dirac contexłuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{ReTr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a, j} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a, j} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

$$
U=\exp \left(-i \Pi_{a_{j}} \otimes P\right)
$$

$$
\text { [Pusey, PRL 113, } 200401 \text { (2014)] }
$$

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

Kirkwood-Dirac contextuality proof

$$
\operatorname{Re}\left(q_{a_{j}, f_{k}}^{\rho}\right)=\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a j} \rho\right)<0
$$

\Longrightarrow one experiment is contextual.
An experiment combining weak measurement and postselection:

Kirkwood-Dirac contextuality proof

Final pointer position:

[Pusey, PRL 113, 200401 (2014)]

Kirkwood-Dirac contextuality proof

Final pointer position:

$$
p_{-}^{\text {ideal }}=\int_{-\infty}^{0} d x \operatorname{Tr}\left(\Pi_{f_{k}} \mathcal{N}_{x} \rho \mathcal{N}_{x}^{\dagger}\right)=\frac{p_{F}}{2} \frac{\operatorname{Re} \operatorname{Tr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)}{\sqrt{\pi} s}+\mathrm{o}(1 / s)
$$

[Pusey, PRL 113, 200401 (2014)]

Kirkwood-Dirac contextuality proof

Final pointer position:

$$
\begin{aligned}
& p_{-}^{\text {ideal }}=\int_{-\infty}^{0} d x \operatorname{Tr}\left(\Pi_{f_{k}} \mathcal{N}_{x} \rho \mathscr{N}_{x}^{\dagger}\right)=\frac{p_{F}}{2} \frac{\operatorname{ReTr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)}{\sqrt{\pi} S}+\mathrm{o}(1 / s) \\
& p_{-}^{\mathrm{NOM}} \leq \frac{p_{F}}{2}+p_{d}=\frac{p_{F}}{2}+\mathrm{o}(1 / s)
\end{aligned}
$$

[Pusey, PRL 113, 200401 (2014)]

Kirkwood-Dirac contextuality proof

Final pointer position:

$p_{-}^{\text {ideal }}=\int_{-\infty}^{0} d x \operatorname{Tr}\left(\Pi_{f_{k}} \mathcal{N}_{x} \rho \mathcal{N}_{x}^{\dagger}\right)=\frac{p_{F}}{2} \frac{\operatorname{ReTr}\left(\Pi_{f_{k}} \Pi_{a_{j}} \rho\right)}{\sqrt{\pi} s}+\mathrm{o}(1 / s)$
$p_{-}^{\mathrm{NOM}} \leq \frac{p_{F}}{2}+p_{d}=\frac{p_{F}}{2}+\mathrm{o}(1 / s)$
KD negativity implies contextuality.
Also holds for KD nonreality.
[Kunjwal, Lostaglio, and Pusey, PRA 100, 042116 (2019)]

Summary

Kirkwood-Dirac distributions...

- enable the quantization of results in stochastic thermodynamics
- provide a rigorous witness of nonclassicality

Thanks for your attention!
[Upadhyaya, Braasch, Landi, Yunger Halpen, arXiv:2305.15480 (2023)]

Noncontextuality and positive quasiprobabilities

Quasiprobability distributions are defined over measurable spaces.
Quantum experiment:

Nonnegative quasiprobability rep.: $p(\lambda \mid P)$

This implies that contextuality is equivalent to negative or nonreal quasiprobabilities in every representation of an experiment.

Nonclassicality in a thermodynamic setting

Nonclassical work extraction.

> Two-stroke cycle:

System Baths

- Prepare nonequilib. steady-state ρ
- Disconnect baths and implement $U(\tau)$, generated by $H_{0}+g V(t)$

The work extracted in one cycle is the change of the energy's expectation value:

$$
\begin{aligned}
W^{Q}= & \frac{2 g \tau}{\hbar} \operatorname{Im} \operatorname{Tr}\left(\rho X H_{0}\right)+\mathcal{O}\left(g^{2}\right) \\
& \text { where } X:=(1 / \tau) \int_{0}^{\tau} V_{I}(t) d t .
\end{aligned}
$$

For small enough g, the averaged KD distribution $\operatorname{Im} \operatorname{Tr}\left(\rho X H_{0}\right)$ is not compatible with that in every NOM.

