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Weak value definition
Aharanov, Albert, and Vaidman (1988)

Ingredients:
1) Pre-selection of system

2) Weak measurement w/ a meter

3) Post-selection of system

4) Measure (conditioned) meter shift.

Properties:
1) Time symmetric

2) Formally similar to the expectation value

3) Can exceed the eigenvalue range

4) Generally complex

“How the Result of 
Measurement of a 
Component of the Spin 
of a Spin- 1/2 Particle 
Can Turn Out to Be 
100”
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(Optical) Realization of the weak 
value

Polarization 
based

Interference 
based

Rev. Mod. Phys. 86, 307 (2014) 
Justin Dressel, Mehul Malik, Filippo 
M. Miatto, Andrew N. Jordan, 
Robert W. Boyd 

http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.307


Naturally related to 
Kirkwood-Dirac 

quasi-distribution

Thus, the weak value is an average of the eigenvalues of A under a 
conditional quasiprobability distribution -> must have negativity for it 
to exceed the eigenvalues.  ANJ+JD+DAS+et al, in preparation.



Naturally related to 
Kirkwood-Dirac 

quasi-distribution
Moreover, the full KD distributional representation for a 
quantum state can be decomposed into conditional 
quasiprobabilities,

… and ensemble averages of weak values recover 
expectation values.



Connection to the Leggett-Garg 
inequality

An interesting argument testing the limits of macroscopic coherence and 
notions of “quantumness" was formulated by Leggett and Garg (1985).

•Quantum Mechanics versus Macroscopic Realism: Is the Flux 
There when Nobody Looks?

•(A1) Macroscopic realism: A macroscopic system with two or 
more macroscopically distinct states available to it will at all 
times be in one or the other of these states.

•(A2) Noninvasive measurability at the macroscopic level: It is 
possible, in principle, to determine the state of the system 
with arbitrarily small perturbation on its subsequent 
dynamics.

•Idea – try and find test of these assumptions.



Proposed Experiment – SQUID 
loop

We define a 
quantity Q, 
which equals 
+ 1 ( -1) if the 
system is 
observed to be 
in region R ( L).

We can define (i) joint 
probability densities 
p(Q1,Q2 ), 
p(Q1,Q2,Q3 ), etc. for 
Q to have the values 
Q1 at times t1 (we 
take t0 < t1 < t2 • • .) , 
(ii) correlation 
functions 
Kij = < Qi Qj >.   
Applying the 
assumptions A1 and 
A2 give inequalities.Time 1 Time 2 Time 3



New idea – ANJ et al.
• Do all the measurements at once with weak 

measurements. PRL 97, 026805 (2006)

• Violation of generalized LGIs the same as strange weak 
values. PRL 100, 026804 (2008).



Experiments

Goggin et al., PNAS (2010)



Superconductors
Groen et al.,  PRL 111, 090506 (2013)



Can reexamine this effect as a 
manifestation of a quasi-distribution

The three outcomes are r1; r2; r3, and
the correlation functions Kij = <rirj> are considered.

3 Dichotomic variables with eigenvalues +1, -1 each.
Generalized Leggett-Garg inequality:

Use three observable KD distribution, Q=

Probability P of finding outcome ai =



Can reexamine this effect as a 
manifestation of a quasi-distribution

The term in brackets has an upper bound of 1, so once again we see that in 
order for the right-hand side to exceed the upper bound of 1, as observed 
experimentally, Q must exhibit negativity.



Connect to Weak Value

Conditional probability Weak value of B.

We see that the LGI must be bounded by +1 if a and c both take +1, and B is 
its best “classical value”, +1.  So one can prove in this case that the LGI is 
violated if and only if the weak value takes anomalous values. 

Thus, in order to violate the Leggett-Garg inequality's upper bound of 1 as 
observed experimentally, at least one of two specic KD quasiprobabilities, must 
become negative, each case causing a corresponding weak value, to violate its 
eigenvalue bounds.



Intermediate Conclusions

• The weak value becoming anomalous can be seen as a manifestation of the 
negativity of a KD pseudo-distribution

• The violation of the generalized LGI can also be seen as a manifestation of 
the negativity of the KD pseudo-distribution.

• In the case we have discussed, the LGI is violated at the same points where 
the weak value becomes anomalous.

• Additional assumptions/argumentation needed to rule out classical models 
(invasive detectors, clumsiness, etc.)



Another way to do all of this with 
true probabilities!



Contextual values
• Different theoretical approach to weak values – 

contextual values (or generalized eigenvalues).
• Go beyond thinking of an observable in terms of its 

eigenvalues, and interpret the measurement results 
within their own context.

• We derive a generalization of the AAV formula applicable 
to arbitrary strength measurements, mixed states, and 
POVM postselections in terms of weighted averages of 
the contextual values.

• Resolves many of the paradoxical features of WVs.
• Recovers other known specific results in literature.
•  Closer connection of WVs to POVM formalism.

J. Dressel, S. Agarwal, A. N. Jordan,  Phys. Rev. Lett. 104, 240401 (2010)  

http://link.aps.org/doi/10.1103/PhysRevLett.104.240401


Contextual values – basic idea
Appears as

Find the color distribution of a jar of 
marbles, if you are nearly colorblind.

You know that you guess blue (b) correctly 51% of the time, 
and red (r) correctly 51% of the time.  Write “thumbs up” (u) if 
you think it is blue and “thumbs down” (d) if you think it is red.

We can find the color average 1 P(b) – 1 P(r) = a P(u) + b P(d).

Works regardless what P(r) and P(b) are!!!  Thus, we 
can choose a = 50, b = -50 to get the right average.  
Amplification of eigenvalue range!

Context is the precise degree of color-blindness; Contextual values for 
color are 50, -50.   Multiple ways to measure same observable!

Assign numbers:  r      -1, b      1, but different numerical values for u      a and d       b.  
Which?



Contextual values – basic idea
Appears as

We can now consider averages conditioned on a 
later event f:

f<color> = a P(u|f) + b P(d|f),

In the usual way – no funny negative probabilities.
P(u|f) and P(d|f) are simply conditional probabilities 
of actual events you have access to.

In classical physics, this turns out to be between -1, 1 – whereas in QM, the 
analogous calculations can have interference, enhancing one CV over to other to 
exceed the eigenvalue range.



Contextual Values – more
A measurement context is given by the kind of 
experiment that is being done, represented formally by 
a Positive operator valued measure (POVM)

Together with the density matrix, this gives the 
probabilities of different things happening.

The key idea is to expand the measured observable in 
terms of the POVM elements, with coefficients that 
generalize the eigenvalues of A.

From this, it is possible to reconstruct averages of the operator 
moments, or to find conditioned averages in the weak limit:



Contextual Values…
•Show how any measurable conditioned average is always real.

•Resolves the negative probability “problem” by expanding the 
eigenvalue range to the contextual value range.

•Allows a proof of the uniqueness of a WV under certain 
reasonable conditions (in the weak limit).

•Allows a principled generalization of conditioned averages to 
mixed initial state, post-selection on generalized measurements 
and arbitrary strength measurements.

Long paper:  Dressel and Jordan, PRA, 85, 022123, (2012)



Conclusions
• Weak measurements
• Weak values
• Pseudo-Distributions
• Leggett-Garg inequality
• Contextual values

• See forthcoming review on the subject of the 
KD pseudo-distribution with David AS + 
Justin + many people in the room.


