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Overview

 Weak Values & Pseudo-distributions
— Brief review of AAV'’s idea
— Connection to pseudo-distributions
— Physical Implementations
— Connection the Leggett-Garg inequality

— Contextual values as a way to get back to real
probabilities

— Weak values as a novel amplification technique
— Beam deflection & Phase detection

* Recent advances
— Weak value amplification on chip



Weak value definition

Aharanov, Albert, and Vaidman (1988)

) (0| Al Ingredients:
e .:;f-z?.-i!f |2;) 1) Pre-selection of system
2) Weak measurement w/ a meter

FERPs ResHion 3) Post-selection of system
Measurement of a y
Component of the Spin ~ 4) Measure (conditioned) meter shift.
of a Spin- 1/2 Particle =N
Can Turn Out to Be Propertles.
100™ 1) Time symmetric

2) Formally similar to the expectation value
3) Can exceed the eigenvalue range
)

4) Generally complex



Stern-Gerlach

oi]. %I\

-Preselection of spin state in ~|x)

Contains

*Weak splitting in z direction
*Strong splitting in x direction Beam block
*Postselection in x direction (or spin state)

*Recording of the z deflection



After Postselection

Measured
mean
<l// out ‘A‘l//zn > h/2

<WOut Hl//in > \ e



(Optical) Realization of the weak
value

BRI Piezo
HWP QWP /) Driven
a .
(a) - I Mirror
Camera
2R To Oscilloscope -SBC
. ) or Lock-In 50/50 /
A Amplifier BS
| : Zim
olariser
\ ccb olarizing 10x
Quadrant Obiecti
Collimating Detector jective ‘
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(b)
HWP QWP

Polarization Interference
Position based based

Imaging Lens

Birefringent
Crystal

Rev. Mod. Phys. 86. 307 (2014)
Justin Dressel, Mehul Malik, Filippo
M. Miatto, Andrew N. Jordan,
Robert W. Boyd

Momentum
Imaging Lens


http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.307

Naturally related 1o
Kirkwood-Dirac
quasi-distribution

i)

p = Z Aa....i..bj Qi,j (p) - (22} ([3) — <bj ’(1.-?j> <(1..?j )
i,]
A= Z“”i |a;) (@i , B = Z b; 1b)(bsl

Aa,z-\bj — ‘a“i> <b]‘/<b} ‘(l--j>

A, b] Z Ql ] Z a; Q?’IJ’* ().

i

Thus, the weak value is an average of the eigenvalues of A under a
conditional quasiprobability distribution -> must have negativity for it
to exceed the eigenvalues. ANJ+JD+DAS+et al, in preparation.



Naturally related 1o
Kirkwood-Dirac
quasi-distribution

Moreover, the full KD distributional representation for a
quantum state can be decomposed into conditional
quasiprobabilities,

Qi (V) = Q (W) P(bj|v),

... and ensemble averages of weak values recover
expectation values.

Y P(bj|v) Aw(t,bj-) = > (wlbj){bj-| Al) = (B Alw),

J J



Connection to the Leggett-Garg
iInequality

An interesting argument testing the limits of macroscopic coherence and
notions of “quantumness” was formulated by Leggett and Garg (1985).

*Quantum Mechanics versus Macroscopic Realism: Is the Flux
There when Nobody Looks?

*(A1) Macroscopic realism: A macroscopic system with two or
more macroscopically distinct states available to it will at all
times be in one or the other of these states.

*(A2) Noninvasive measurability at the macroscopic level: It is
possible, in principle, to determine the state of the system
with arbitrarily small perturbation on its subsequent
dynamics.

*ldea — try and find test of these assumptions.



Proposed Experiment — SQUID

We define a
quantity Q,
which equals
+1(-1)if the
system is
observed to be
in region R (L).

o O
e

@ ®
Time 1 Time 2 Time 3

Potential Energy V(q)

loop

1. 1 1
"9 0 9
Trapped Flux, g

14+ K3+ K3+ K330,

K3+ Kpl+ Kig— Kl < 2.

We can define (i) joint
probability densities
p(Q1,Q2),
p(Q1,Q2,Q3 ), etc. for
Q to have the values
Q1 at times t1 (we
taketO <t1 <t2-.),
(i) correlation
funcﬁons

=g Q Q >,
Applylng the
assumptions A1 and
A2 give inequalities.



New idea — ANJ et al.

Do all the measurements at once with weak
measurements. PRL 97, 026805 (20006)

w%HHHH%j\
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 Violation of generalized LGls the same as strange weak
values. PRL 100, 026804 (2008). \
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Experiments

detection
signal out

detection
meter out

signal in

|oin (6))

|:uin ('7))

Goggin et al.
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Superconductors
Groen et al., PRL 111, 090506 (2013)

3E
3lJ T lJ4 ideal
B 1k 16
w )
- m - - m
H, lo b H, ideal - - ° g
e s model — -1 -
v 1{} . . (\ : r‘z data v _of
f [: ) (I ) | ‘/ -3F
fm :Hz 200 pm % ‘ /! Z (e) 1 5 I
Nl al | V\' s 10 |
b ' —— (¢ 12 '
Q lv)y—p—— v ideal = = p.5F 410
T =
: — o.0of e
A R H AN M 8
Ry fm data B1 A _05 L\ 3
" 1.0}b

-180 -90 0 90 180
Rabi-rotation angle 6 (deg)

WUNJUBN) =t

— wnjuenp



Can reexamine this effect as a
manifestation of a quasi-distribution

The three outcomes are r:; r2; r;, and
the correlation functions K= <rir> are considered.

A = |ay) (a1| — lag) (az|, B = |b1) (b1] — |b2) (b2| and C = |c1) {c1| — |e2) (2
3 Dichotomic variables with eigenvalues +1, -1 each.
Generalized Leggett-Garg inequality:
L= I{],Q + ]{23 — ]{]_3 < 1.

Use three observable KD distribution, Q= (c|b;) (b;|a;) (a;|ck)

Probability P of finding outcome a.=  P(a:|¢)) = [(a:|)[?



Can reexamine this effect as a
manifestation of a quasi-distribution

L = [(12 + [{23 — [(13 < 1.
L= Qurllas) (ai])Plailv)laib; + bjcr — aicy).
£

The term in brackets has an upper bound of 1, so once again we see that in
order for the right-hand side to exceed the upper bound of 1, as observed
experimentally, Q must exhibit negativity.



Connect to Weak Value

L = Z P(ckla;)Pla;|v)|(a; + cx)Bw(ai, cx) — a;ck).
W

l

Conditional probability Weak value of B.

We see that the LGl must be bounded by +1 if a and c both take +1, and B is
its best “classical value”, +1. So one can prove in this case that the LGl is
violated if and only if the weak value takes anomalous values.

Thus, in order to violate the Leggett-Garg inequality's upper bound of 1 as
observed experimentally, at least one of two specic KD quasiprobabilities, must
become negative, each case causing a corresponding weak value, to violate its
eigenvalue bounds.



Intermediate Conclusions

The weak value becoming anomalous can be seen as a manifestation of the
negativity of a KD pseudo-distribution

The violation of the generalized LGI can also be seen as a manifestation of
the negativity of the KD pseudo-distribution.

In the case we have discussed, the LGl is violated at the same points where
the weak value becomes anomalous.

Additional assumptions/argumentation needed to rule out classical models
(invasive detectors, clumsiness, etc.)



Another way to do all of this with
true probabilities!



Contextual values

Different theoretical approach to weak values —
contextual values (or generalized eigenvalues).

Go beyond thinking of an observable in terms of its
eigenvalues, and interpret the measurement results
within their own context.

We derive a generalization of the AAV formula applicable
to arbitrary strength measurements, mixed states, and
POVM postselections in terms of weighted averages of
the contextual values.

Resolves many of the paradoxical features of WVs.
Recovers other known specific results in literature.
Closer connection of WVs to POVM formalism.

. Dressel, S. Agarwal, A. N. Jordan, Phys. Rev. Lett. 104, 240401 (2010)



http://link.aps.org/doi/10.1103/PhysRevLett.104.240401

Contextual values — basic idea

Appears as

Find the color distribution of a jar of
marbles, if you are nearly colorblind.

You know that you guess blue (b) correctly 51% of the time,
and red (r) correctly 51% of the time. Write “thumbs up” (u) if
you think it is blue and “thumbs down” (d) if you think it is red.

OK.A. RENNINGER 2010

Assign numbers: re-1, b =1, but different numerical values for u =a and d =) b.
Which?

We can find the color average 1 P(b) — 1 P(r) = a P(u) + b P(d).

1 51 .49 a Works regardless what P(r) and P(b) are!!! Thus, we
41— \ 46 Bi }, | canchoose a =50, b =-50 to get the right average.

Amplification of eigenvalue range!

Context is the precise degree of color-blindness; Contextual values for
color are 50, -50. Multiple ways to measure same observable!



Contextual values — basic idea

Appears as

We can now consider averages conditioned on a
later event f:

<color> = a P(u[f) + b P(d|f),

OK.A. RENNINGER 2010

In the usual way — no funny negative probabilities.
P(u|f) and P(d|f) are simply conditional probabilities
of actual events you have access to.

In classical physics, this turns out to be between -1, 1 — whereas in QM, the

analogous calculations can have interference, enhancing one CV over to other to
exceed the eigenvalue range.



Contextual Values — more

A measurement context is given by the kind of
experiment that is being done, represented formally by
a Positive operator valued measure (POVM)

— {E. = MM, g
QE o {EL] T M} Mj} 5 ::1
Together with the density matrix, this gives the

probabilities of different things happening.

Contextual values f

P] — TI[EJPA] IERERE

The key idea is to expand the measured observable in
terms of the POVM elements, with coefficients that
generalize the eigenvalues of A.

A = E .('l':'J'EJ' — E .(l,-kH;‘,
] k

From this, it is possible to reconstruct averages of the operator
moments, or to find conditioned averages in the weak limit:

A = Tr[EP{A, p}] / 2TH{E) p),



Contextual Values...

*Show how any measurable conditioned average is always real.

*Resolves the negative probability “problem” by expanding the
eigenvalue range to the contextual value range.

*Allows a proof of the uniqueness of a WV under certain
reasonable conditions (in the weak limit).

*Allows a principled generalization of conditioned averages to
mixed initial state, post-selection on generalized measurements
and arbitrary strength measurements.

Long paper: Dressel and Jordan, PRA, 85, 022123, (2012)



Conclusions

Weak measurements
Weak values
Pseudo-Distributions
Leggett-Garg inequality
Contextual values

» See forthcoming review on the subject of the
KD pseudo-distribution with David AS +
Justin + many people in the room.




