QuiDiQua - Lille

November 10, 2023

# Nonclassicality and genuine non-Gaussianity of photon-added/subtracted Gaussian states

Anaelle Hertz in collaboration with S. De Bièvre

National Research Council of Canada





 We need non-Gaussian states to perform certain quantum information tasks.

 Non-Gaussianity is however not always enough
 ⇒ Nonclassicality or the stronger property of genuine non-Gaussianity are needed

 One way of creating non-Gaussian states: photon addition/subtraction

- We need non-Gaussian states to perform certain quantum information tasks.
- Non-Gaussianity is however not always enough
   Nonclassicality or the stronger property of genuine non-Gaussianity are needed
- One way of creating non-Gaussian states: photon addition/subtraction

- We need non-Gaussian states to perform certain quantum information tasks.
- Non-Gaussianity is however not always enough
   Nonclassicality or the stronger property of genuine non-Gaussianity are needed
- One way of creating non-Gaussian states: photon addition/subtraction



- We need non-Gaussian states to perform certain quantum information tasks.
- Non-Gaussianity is however not always enough
   Nonclassicality or the stronger property of genuine non-Gaussianity are needed
- One way of creating non-Gaussian states: photon addition/subtraction



#### Definitions



A state  $\rho$  of a bosonic field is classical if it is a mixture of coherent states  $|\alpha\rangle$  (P = Glauber-Sudarshan P-function):

 $ho = \int_{\mathbb{C}} P(\alpha) |\alpha\rangle \langle \alpha | \mathrm{d} lpha, \quad ext{with} \quad P(\alpha) \geq 0, \ \int_{\mathbb{C}} P(\alpha) \mathrm{d} lpha = 1.$ 

Otherwise, it is nonclassical.

NONCLASSICAL

A state  $\rho$  of a bosonic field is classical if it is a mixture of coherent states  $|\alpha\rangle$  (P = Glauber-Sudarshan P-function):

 $\rho = \int_{\mathbb{C}} P(\alpha) |\alpha\rangle \langle \alpha | d\alpha, \quad \text{with} \quad P(\alpha) \ge 0, \ \int_{\mathbb{C}} P(\alpha) d\alpha = 1.$ Otherwise, it is nonclassical.

A state  $\rho$  of a bosonic field is genuine non-Gaussian if it cannot be written as a mixture of Gaussian states  $\rho^{G}$ , i.e. if

$$\rho \notin \mathcal{G} \quad \text{where} \quad \mathcal{G} := \left\{ \rho \mid \rho = \int F(\gamma) \rho^{\mathsf{G}}(\gamma) \mathrm{d}\gamma \right\}$$

### Definitions

For example:  $\frac{1}{2}(|0\rangle\langle 0| + |\alpha\rangle\langle \alpha|)$  is non Gaussian but in  $\mathcal{G}$ 

A state  $\rho$  of a bosonic field is classical if it is a mixture of coherent states  $|\alpha\rangle$  (P = Glauber-Sudarshan P-function):



 $\rho = \int_{\mathbb{C}} P(\alpha) |\alpha\rangle \langle \alpha | d\alpha, \quad \text{with} \quad P(\alpha) \ge 0, \ \int_{\mathbb{C}} P(\alpha) d\alpha = 1.$ Otherwise, it is nonclassical.

A state  $\rho$  of a bosonic field is genuine non-Gaussian if it cannot be written as a mixture of Gaussian states  $\rho^{G}$ , i.e. if

$$\rho \notin \mathcal{G} \quad \text{where} \quad \mathcal{G} := \left\{ \rho \mid \rho = \int F(\gamma) \rho^{\mathsf{G}}(\gamma) \mathrm{d}\gamma \right\}$$

In general hard to determine P (and hence to check its positivity) or to determine if a state can be written as a convex mixture of Gaussian states.

In general hard to determine P (and hence to check its positivity) or to determine if a state can be written as a convex mixture of Gaussian states.

 $\Rightarrow$  Need for simple criteria (computable/measurable) to determine the nonclassicality and/or genuine non-Gaussianity of  $\rho$ 

In general hard to determine P (and hence to check its positivity) or to determine if a state can be written as a convex mixture of Gaussian states.

 $\Rightarrow$  Need for simple criteria (computable/measurable) to determine the nonclassicality and/or genuine non-Gaussianity of  $\rho$ 

For Nonclassicality

- Quadrature Coherence Scale
- Wigner negative volume



In general hard to or to determine if a Gaussian states.

> ⇒ Need for si determine non-Gaussi

- For Nonclassicality
- General:  $C^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2}$ Pure state:  $C^2(|\psi\rangle) = \frac{1}{n} \sum_{i=1}^n ((\Delta X_i)^2 + (\Delta P_i)^2)$ Gaussian states:  $C^2(\rho_G) = \frac{1}{2n} \text{Tr} V^{-1}$ 
  - Quadrature Coherence Scale
  - Wigner negative volume



In general hard to or to determine if a Gaussian states.

> ⇒ Need for si determine non-Gaussi

For Nonclassicality

- General:  $C^{2}(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_{2}^{2}}{\|W\|_{2}^{2}}$ Pure state:  $C^{2}(|\psi\rangle) = \frac{1}{n} \sum_{i=1}^{n} ((\Delta X_{i})^{2} + (\Delta P_{i})^{2})$ Gaussian states:  $C^{2}(\rho_{G}) = \frac{1}{2n} \operatorname{Tr} V^{-1}$ Witness:  $C^{2}(\rho) > 1 \implies \rho$  is nonclassical
  - Quadrature Coherence Scale
  - Wigner negative volume



In general hard to or to determine if a Gaussian states.

> ⇒ Need for si determine non-Gaussi

 $\begin{array}{ll} \text{General:} \ \mathcal{C}^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2} \\ \text{Pure state:} \ \mathcal{C}^2(|\psi\rangle) = \frac{1}{n} \sum_{i=1}^n ((\Delta X_i)^2 + (\Delta P_i)^2) \\ \text{Gaussian states:} \ \mathcal{C}^2(\rho_G) = \frac{1}{2n} \text{Tr} V^{-1} \\ \text{Witness:} \ \mathcal{C}^2(\rho) > 1 \implies \rho \text{ is nonclassical} \\ \text{Not a distance but } \mathcal{C}(\rho) - 1 \leq D(\rho, \mathcal{E}_{cl}) \leq \mathcal{C}(\rho) \end{array}$ 

For Nonclassicality

- Quadrature Coherence Scale
- Wigner negative volume



In general hard to or to determine if a Gaussian states.

> ⇒ Need for si determine non-Gaussi

For Nonclassicality

- $\begin{array}{ll} \text{General:} \ \mathcal{C}^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2} \\ \text{Pure state:} \ \mathcal{C}^2(|\psi\rangle) = \frac{1}{n} \sum_{i=1}^n ((\Delta X_i)^2 + (\Delta P_i)^2) \\ \text{Gaussian states:} \ \mathcal{C}^2(\rho_G) = \frac{1}{2n} \text{Tr} V^{-1} \\ \text{Witness:} \ \mathcal{C}^2(\rho) > 1 \implies \rho \text{ is nonclassical} \\ \text{Not a distance but } \mathcal{C}(\rho) 1 \leq D(\rho, \mathcal{E}_{cl}) \leq \mathcal{C}(\rho) \end{array}$ 
  - Quadrature Coherence Scale
  - Wigner negative volume

For **Genuine non-Gaussianity**  $\rightarrow$  if  $W(0) \leq \frac{2}{\pi} e^{-2\bar{n}(1+\bar{n})}$ 

In general hard to or to determine if a Gaussian states.

> ⇒ Need for si determine non-Gaussi

For Nonclassicality

- $\begin{array}{l} \text{General: } \mathcal{C}^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2} \\ \text{Pure state: } \mathcal{C}^2(|\psi\rangle) = \frac{1}{n} \sum_{i=1}^n ((\Delta X_i)^2 + (\Delta P_i)^2) \\ \text{Gaussian states: } \mathcal{C}^2(\rho_G) = \frac{1}{2n} \text{Tr} V^{-1} \\ \text{Witness: } \mathcal{C}^2(\rho) > 1 \implies \rho \text{ is nonclassical} \\ \text{Not a distance but } \mathcal{C}(\rho) 1 \leq D(\rho, \mathcal{E}_{cl}) \leq \mathcal{C}(\rho) \end{array}$ 
  - Quadrature Coherence Scale
  - Wigner negative volume

For **Genuine non-Gaussianity**  $\blacktriangleright$  if  $W(0) \leq \frac{2}{\pi} e^{-2\bar{n}(1+\bar{n})}$ 

NOTE: all this can be computed if one knows  $W(\alpha)$ .

⇒ We provide explicit and general expressions for  $\chi(\xi)$ and  $W(\alpha)$  of photon added/subtracted Gaussian states

## To which extent photon added/subtracted states are nonclassical and/or genuine non-Gaussian ?

How does their nonclassicality/ genuine non-Gaussianity compare to the one of the original Gaussian state?







Any Gaussian state (classical or not) transforms into a Wigner negative state and hence nonclassical and quantum non-Gaussian.



Any Gaussian state (classical or not) transforms into a Wigner negative state and hence nonclassical and quantum non-Gaussian.

Wigner negative volume

- $\rightarrow$  is highest for  $a^{\dagger}S(z)|0\rangle$ .
- $\rightarrow$  is sensitive to noise
- $\rightarrow$  decreases with increased squeezing





Any Gaussian state (classical or not) transforms into a Wigner negative state and hence nonclassical and quantum non-Gaussian.

Wigner negative volume

- $\rightarrow$  is highest for  $a^{\dagger}S(z)|0\rangle$ .
- $\rightarrow$  is sensitive to noise
- $\rightarrow$  decreases with increased squeezing



QCS gives more info about nonclassicality, but what is really interesting is the gain  $\checkmark$  QCS can increase up to 200%  $\times$  but become very sensitive to decoherence





▶ Well known: → photon-subtraction transforms a classical state into a classical state

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !



## ► Well known: → photon-subtraction transforms a classical state into a classical state

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !

► Well known: → photon-subtraction transforms a classical state into a classical state

 $\rightarrow$  Photon subtraction can make a nonclassical state classical:  $a|1\rangle=|0\rangle$ 

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !

► Well known: → photon-subtraction transforms a classical state into a classical state

 $\rightarrow$  Photon subtraction can make a nonclassical state classical:  $a|1\rangle=|0\rangle$ 

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !



► Well known: → photon-subtraction transforms a classical state into a classical state

 $\rightarrow$  Photon subtraction can make a nonclassical state classical:  $a|1\rangle=|0\rangle$ 

QNG - -  $C^2_{SqTh}=1$  .....  $r = \frac{1}{2} ln \frac{1+q}{1+q}$ 

gative

0.08 0.10

► We proved: photon subtraction always transforms a Gaussian nonclassical state into a nonclassical state.

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !



squeezing

0.3

r 0.2

0.1

0 200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

► Well known: → photon-subtraction transforms a classical state into a classical state

 $\rightarrow$  Photon subtraction can make a nonclassical state classical:  $a|1\rangle=|0\rangle$ 

0.3

0.1

0.00 0.02

gonezing

► We proved: photon subtraction always transforms a Gaussian nonclassical state into a nonclassical state.

- We identify a family of Wigner positive state (interesting because a complete characterization of all Wigner positive states is not known)
- Some of them are genuine non-Gaussian !



0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.08 0.10

QNG - -  $C^2_{SqTh}=1$  .....  $r = \frac{1}{2} ln \frac{1+q}{1-r}$ 

Noise



 $\blacktriangleright$   $\checkmark$  QCS can increase up to 200%

- When q = 0, same state  $\Rightarrow$  same result.
- Same gain asymptotically



- $\blacktriangleright$   $\checkmark$  QCS can increase up to 200%
- When q = 0, same state  $\Rightarrow$  same result.
- Same gain asymptotically



- $\blacktriangleright$   $\checkmark$  QCS can increase up to 200%
- When q = 0, same state  $\Rightarrow$  same result.
- Same gain asymptotically



- $\blacktriangleright$   $\checkmark$  QCS can increase up to 200%
- When q = 0, same state  $\Rightarrow$  same result.
- Same gain asymptotically

QCS of linear combinations of Gaussian functions in phase space

#### QCS of linear combinations of Gaussian functions in phase space

Let the Wigner function of ho be  $W(\mathbf{r}) = \sum_{m} c_m G_{\mu_m,\gamma_m}(\mathbf{r})$  with

$$G_{\mu_m,\gamma_m}(\mathbf{r}) = \frac{\exp[-\frac{1}{2}(\mathbf{r} - \mu_m)^T \gamma_m^{-1}(\mathbf{r} - \mu_m)]}{\sqrt{\det(2\pi\gamma_m)}}.$$
 can also be  
a complex  
(normalized)  
function

#### QCS of linear combinations of Gaussian functions in phase space

Let the Wigner function of ho be  $W(\mathbf{r}) = \sum_m c_m G_{\mu_m,\gamma_m}(\mathbf{r})$  with

$$G_{\mu_m,\gamma_m}(\mathbf{r}) = \frac{\exp[-\frac{1}{2}(\mathbf{r} - \mu_m)^T \gamma_m^{-1}(\mathbf{r} - \mu_m)]}{\sqrt{\det(2\pi\gamma_m)}}.$$
 can also be a complex (normalized) function

⇒ The computation of  $C^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2}$  is done without the need of integration. Result simply written in terms of  $c_m$  and parameters of the Gaussian functions.

#### QCS of linear combinations of Gaussian functions in phase space

Let the Wigner function of ho be  $W(\mathbf{r}) = \sum_m c_m G_{\mu_m,\gamma_m}(\mathbf{r})$  with

$$G_{\mu_m,\gamma_m}(\mathbf{r}) = \frac{\exp[-\frac{1}{2}(\mathbf{r} - \mu_m)^T \gamma_m^{-1}(\mathbf{r} - \mu_m)]}{\sqrt{\det(2\pi\gamma_m)}}.$$
 can also be  
a complex (normalized) function

⇒ The computation of  $C^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2}$  is done without the need of integration. Result simply written in terms of  $c_m$  and parameters of the Gaussian functions.

We can then compute the QCS for

- GKP states
- States in a loss channel
- Output state of a breeding protocol
- etc.

#### QCS of linear combinations of Gaussian functions in phase space

Let the Wigner function of ho be  $W(\mathbf{r}) = \sum_m c_m G_{\mu_m,\gamma_m}(\mathbf{r})$  with

$$G_{\mu_m,\gamma_m}(\mathbf{r}) = \frac{\exp[-\frac{1}{2}(\mathbf{r} - \mu_m)^T \gamma_m^{-1}(\mathbf{r} - \mu_m)]}{\sqrt{\det(2\pi\gamma_m)}}.$$

⇒ The computation of  $C^2(\rho) = \frac{1}{4n} \frac{\|\nabla W\|_2^2}{\|W\|_2^2}$  is done without the need of integration. Result simply written in terms of  $c_m$  and parameters of the Gaussian functions.

We can then compute the QCS for

- GKP states
- States in a loss channel
- Output state of a breeding protocol
- etc.



#### For more details

#### Go check our paper

#### PHYSICAL REVIEW A 107, 043713 (2023)

#### Decoherence and nonclassicality of photon-added and photon-subtracted multimode Gaussian states

Anaelle Hertz Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Stephan De Bièvre 9 Univ. Lille, CNRS, Inria, UMR 8524, Laboratoire Paul Painlevé, F-59000 Lille, France

(Received 8 November 2022; accepted 10 April 2023; published 26 April 2023)

#### For more details



