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In this talk, I will give a brief introduction to the Kirkwood-Dirac (KD) distribution.
Then, I will show how collaborators and I have used the KD distribution as a tool to
develop quantum metrology. The Wigner function has played a pivotal role in the de-
velopment of continuous-variable quantum systems with clear analogues to position and
momentum. However, it is ill-suited for modern quantum-information research, which
mostly concerns �nite-dimensional systems and general observables. Instead, recent years
has seen the KD distribution [5, 3] come to the forefront as a powerful tool to analyse
quantum mechanics. The KD distribution allows tools from statistics and probability
theory to be applied to problems in quantum-information processing [1]. In many ways,
the KD distribution behaves as a joint probability distribution, but it can take negative
and nonreal values. One �eld advanced by the KD distribution is quantum metrology.
Quantum metrology is the �eld of using quantum states to measure and estimate things.
In metrology, one can improve signal-to-noise ratios by preparing and measuring an in-
creasing number of probes. However, quantum measurement devices saturate if the probe
intensity exceeds some threshold. By placing a �lter before a detector, it is possible to
mitigate the e�ect of detector saturation by compressing the metrological information
from a high-intensity probe beam into a low-intensity one [2, 7]. But how does one de-
sign the best �lters? Collaborators and I expressed quantum-metrology experiments in
terms of a KD distribution [2, 4]. Doing so allowed us to connect negative values in the
KD distribution with a �lter's ability to compress information. Moreover, by mapping
out how one could increase the magnitude of the negative values, we understood how to
design optimal �lters for quantum metrology. In the absence of noise, our �lter allows
unbounded and lossless information compression. In a recent experiment to measure po-
larization rotations, we used our �lter to mitigate detector saturation and improved the
signal-to-noise ratio by a factor of 200 [6].
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